

Mitochondrial diversity in mouse and human brains

Martin Picard, Ph.D. Department of Psychiatry, Division of Behavioral Medicine Department of Neurology, H. Houston Merritt Center Robert N Butler Columbia Aging Center Columbia Translational Neuroscience Initiative New York State Psychiatric Institute (NYSPI) COLUMBIA

COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Life is a regulated **energetic cascade** sustained by information transfer across interconnected biological systems

ENERGY

- HIGHEST ENERGY CONSUMPTION
- CONSTANT ENERGY FLUX
- DYNAMIC ENERGY PATTERNS

CONNECTIONS

- MOST DENSELY CONNECTED ORGAN
- LONG-RANGE CONNECTIONS
- **PLASTICITY**

Thiebaut de Schotten and Forkel. Science 2022

The brain's enormous, constant energy demand

Variations from rest to activity is $\sim 5\%$

Padamsey and Rochefort. Curt Opin Neurobiol 2023

How much of inter-individual differences in **behaviors** are driven by **mitochondria**?

How much of inter-individual differences in **behaviors** are driven by **mitochondria**?

Miniaturization & optimized throughput

Computational integration

Similarity matrix based on mitochondrial activities

Are there brain networks with shared mitochondrial phenotypes?

Manish Saggar

Manish Saggar

Anna Monzel

Jack Devine

Anna Monzel

Data from Allen Mouse Brain Atlas Mitopathways from MitoCarta 3.0

mPFC

Cereb

Brain Networks

M1

mOFC

Similarity matrix based on mitochondrial activities

Network-based mito-behavior correlations

Brain mitochondria account for **up to ~20-45%** of the <u>explainable</u> variance in behaviors between animals

How are mitochondria distributed, and do they specialize across the *human* brain?

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

Closing the gap between organellar bioenergetic profiling and whole-brain neuroimaging modalities (fMRI, PET, CBV, DWI, etc)

Eugene Mosharov

Right hemisphere slab at MNI -15.51

Anterior surface of the frozen brain slab

Cleaning (-1 mm)

Milling

Right hemisphere slab at MNI -15.51

Anterior surface of the frozen brain slab

Cleaning (-1 mm)

Milling

Collection

е

f

d

Collection (-3 mm)

Cleaning (-0.3 mm)

AITCHUI SUHACE UI THE HUZEH MAIH SIAN

Cleaning (-1 mm)

Milling

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

Eugene Mosharov

Physical *voxelization* of the human brain *a*t fMRI resolution

Quality control on 702 human brain voxels

Anna Monzel

Human brain mitochondrial specialization is driven by both REGIONS & CELL TYPES

OxPhos and mtDNA profiling

Corey Osto, Linsey Stiles, Orian Shirihai Ayelet Rosenberg

Mitochondrial profiling of 703 physical brain voxels at fMRI resolution

Eugene Mosharov Ayelet Rosenberg Michel Thiebaut de Schotten

Mosharov et al. (under review)

Building a predictive model of brain mitochondria

Occipital lobe (mean±S.D.)

Feature	Observed	Predicted		
CI	1.43±0.27			
CII	1.25±0.16	1.35±0.14		
CIV	1.44±0.17	1.31±0.24		
MitoD	1.17±0.02	1.15±0.07		
TRC	1.39±0.15	1.32±0.18		
MRC	1.22±0.13	1.23±0.12		

r = 0.75

Mitochondrial profiling of 703 physical brain voxels at fMRI resolution

Back-projected onto 20 structural and functional neuroimaging modalities to create a probabilistic mitochondrial map across the whole brain (1.8M voxels)

Michel Thiebaut de Shotten

Why are there different types of mitochondria across the brain?

Evolutionary correlate of mitochondrial OxPhos specialization

Eugene Mosharov Michel Thiebaut de Shotten

SCIENCE ADVANCES | RESEARCH ARTICLE

NEUROSCIENCE

An energy costly architecture of neuromodulators for human brain evolution and cognition

Gabriel Castrillon^{1,2,3}, Samira Epp^{1,4}, Antonia Bose^{1,4}, Laura Fraticelli^{1,4}, André Hechler^{1,4}, Roman Belenya^{1,4}, Andreas Ranft⁵, Igor Yakushev⁶, Lukas Utz¹, Lalith Sundar⁷, Josef P Rauschecker^{8,9}, Christine Preibisch^{1,10}, Katarzyna Kurcyus¹, Valentin Riedl^{1,3}*

MITO BRAIN ROSMAP

Cynthia Liu

Mitochondriat PsychoBiology Lab

OUR RESEARCH

necular processes within mitochondria with the human experience

Precious collaborators

Mitochondrial Biology & Medicine

Michio Hirano Catarina Quinzii CUIMC Neurology

Brett Kaufman Pittsburgh University

Gyuri Hajnóczy Erin Seifert Thomas Jefferson University

Orian Shirihai Mike Irwin UCLA

Tonio Enriquez CNIC Madrid

Vamsi Mootha Rohit Sharma Harvard & MGH

Ryan Mills University of Michigan

Gilles Gouspillou

Jon Brestoff Wash U

MiSBIE & MDEE Teams

Kris Engelstad Catherine Kelly Shufang Li Anna Monzel Janell Smith

Psychosocial Sciences

Robert-Paul Juster Université de Montréal

Elissa Epel Jue Lin Aric Prather Ashley Mason UCSF

Eli Puterman

Clemens Kirshbaum Dresden University

Anna Marsland Rebecca Reed Pittsburgh University

Suzanne Segerstrom University of Kentucky

David Almeida Penn State University

Energy expenditure & metabolism

Marie-Pierre St-Onge Dympna Gallagher Michael Rosenbaum CUIMC Medicine

Chris Kempes Santa Fe Institute

Herman Pontzer Duke

Sam Urlacher Baylor

Brain Neurobiology & Neuroimaging

 Phil De Jager Hans Klein
Vilas Melon Stephanie Assuras CUIMC Neurology

Eugene Mosharov Dave Sulzer John Mann Maura Boldrini Mark Underwood Gorazd Rosoklija Andrew Dwork Chris Anacker Dani Dumitriu Catherine Monk Vincenzo Lauriola Richard Sloan Caroline Trumpff CUIMC Psychiatry

Tor Wager Dartmouth

Michel Thiebaut de Schotten CNRS Bordeaux

Manish Saggar Stanford

Anne Grunewald University of Luxembourg

Carmen Sandi

Biological Aging

Steve Horvath Morgan Levine Altos

Albert Higgins-Chen Yale

Marie-Abèle Bind Harvard

Luigi Ferrucci NIA Intramural

Dan Belsky Linda Fried CUIMC Mailman & Aging Center

BASZUCKI BRAIN RESEARCH FUND

The Nathaniel Wharton Fund

National Institute of Mental Health

National Institute on Aging

MITOCHONDRIAL PsychoBiology Lab

Extended Data Table 1 | List of neuroimaging metrics and their standardized beta coefficient relationship with the mitochondrial features.

Abbreviation	MRI metric	CI	CII	CIV	MitoD	TRC	MRC
AD	axial water diffusivity		.242			.246	
FA	white matter density			.681	.820		
RD	radial water diffusivity	365		.439	.632		175
StreDensity	streamlines density		184				
ICVF	intra-cellular volume fraction	371					
ISOCF	extra-cellular volume fraction		158	438	445	330	
MD	mean water diffusivity						
OD	orientation dispersion index (neurite complexity)	.363	.323	.628	.499	.481	.334
T1W	T1w imaging						
T2W	T2w imaging	245	304	458	410	330	244
T1w/T2w	T1w/T2w ratio	656	580	723	622	617	593
FLAIR	imaging approach to see the anatomy of the brain		221		339		
СТ	cortical thickness						
inner_CSA	local surface for inner cortical ribbon						
plial_CSA	local surface for outer cortical ribbon						
GM	probability of gray matter	-1.038		-1.382		-1.177	939
WM	probability of white matter	-1.082		-1.263	312	-1.040	906
Max_activity	maximum bold derived from fMRI			.380		.333	.501
Reho	regional homogeneity		.145		.135		
Entropy	synaptic complexity derived from fMRI			386		365	560
ALFF	amplitude of Low-Frequency Fluctuation						
fALFF	ratio between low and and high frequency fluctuations						