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Mitochondrial psychobiology examines the interactions between 
psychological states and the molecular and energetic processes  

within mitochondria 



Mitochondria are signal-processing units
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“The organism is integrated into a larger system of information exchange […]. The brain and the rest 
of the organism are not qualitatively different in their ability to compute information, but show only 
qualitative differences in their purposiveness.” — Herbert Weiner, Perturbing the Organism (1992)

Trends Neurosci 2015
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Mitochondria and hormones?



Mitochondria synthesize glucocorticoid and sex hormones
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, and cells of the adrenal 
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Mouse models of mitochondrial dysfunction. Mice with normal mitochondria are compared to mice with mtDNA mutations in genes encoding 
ND6 (NADH dehydrogenase subunit 6) and COI (cytochrome c oxidase subunit 1), decreasing electron transport chain and respiratory capacity. 
ANT1-/- (adenine nucleotide translocator 1) animals have impaired ATP/ADP transport across the inner mitochondrial membrane, and NNT-/- 
(nicotinamide nucleotide transhydrogenase) animals are deficient in a major intra-mitochondrial antioxidant system. 
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recovery, in mice with normal mitochondria (WT), mtDNA mutations in ND6 and COI genes (left), and nDNA deletions of ANT1 and NNT genes (n 
= 8-9, two-way ANOVA, Holm-Sidak’s vs WT, * P < 0.01, ** P < 0.01, *** P < 0.001). (B) Plasma levels of corticosterone and ACTH after 60 
minutes restraint stress. Note that NNT animals have the lowest CORT levels with the highest ACTH (n = 7-10, one-way ANOVA P < 0.001 and 
0.02, Holm-Sidak’s vs WT, * P < 0.05). (C) Ratio CORT/ACTH at 60 minutes (n = 7-10, one-way ANOVA P < 0.001, Holm-Sidak’s vs WT, * P < 
0.05). Data are means ± S.E.M. 
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network distribution of mitochondria within the cell cytoplasm and 
perinuclear region92,93, or in specialized appendages such as presyn-
aptic terminals94, also bear direct functional significance, but only in 
the context of the cell.

Mitochondrial features. Features are the intrinsic building blocks of 
mitochondria. They are generally static molecular components, such 
as the abundance of specific proteins, membrane lipids, mtDNA integ-
rity, the density and configuration of cristae membranes, and many 
other quantifiable metrics. Most omics platforms (such as proteomics, 
lipidomics, transcriptomics and genomics) target static features. As 
demonstrated in MitoCarta52, profiling mitochondrial features pro-
vides rich information on the molecular specialization of mitochondria 

(that is, the hardware). However, quantifying mitochondrial features 
does not reflect their functional capacity or behaviours in their cellular 
context. Static measures of mitochondrial morphology and ultras-
tructure, which include quantitative measures of size (volume) and 
morphological features (length, three-dimensional morphological 
complexity, cristae density, and so on86,95) also belong to the category 
of mitochondrial features.

Mitochondrial activities. Activities are single-enzyme activities that 
are measured as dynamic processes, such as the biochemical activity 
of monomeric (for example, CS) or multimeric (for example, pyruvate 
dehydrogenase complex) enzymes. Activities are made of features but 
do not classify as mitochondrial functions. Mitochondrial activities 

a  Morphological and ultrastructural diversity of mitochondria across mammalian tissues and cells

b  Mitochondrial subpopulations in mouse brain hippocampal neurons c  Mitochondrial subpopulations in mouse and human skeletal myofibre
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Fig. 3 | Diversity in mitochondrial morphology. a, TEM micrographs 
of mitochondria in mammalian tissues and cultured cells. The 143B-ρ0 
mitochondrion lacking mtDNA is from ref. 215. Adrenal mitochondrion 
reproduced with permission from ref. 216. Liver, pancreas, brown adipocyte 
and Leydig cell mitochondria reproduced with permission from ref. 73; other 
images are from M.P.’s laboratory). Note the natural variation in morphology 
(gross shape of mitochondria), in ultrastructure (positioning and organization 

of internal cristae membranes) and overall electron density (reflecting density of 
molecular components). b,c, Three-dimensional reconstructions (b) of neural 
mitochondria from the subcellular compartments of large granule neurons 
in the mouse dentate gyrus (adapted from ref. 85), and of skeletal muscle (c) 
mitochondrial phenotypes between the SS and IMF regions of human skeletal 
muscle fibres (adapted from ref. 86). Note the variation in morphological 
complexity and volume within the mitochondrial population of the same cell.

Different mitochondria types (mitotypes)

Monzel et al. 
Nat Metab 2023
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include the isolated enzymatic activities of OxPhos complexes96 and 
any other enzymatic activities, the isolated activity of individual IMM 
transporters like the ATP/ADP antiporter, proteases, polymerases, 
helicases, metabolite and ion transport across the IMM, to name a few 
examples.

Mitochondrial functions. Functions require at least one step to be 
physically localized within the mitochondrion, and generally involve 
multiple activities contributing to the conversion of an input into an 

output. ATP synthesis, Ca2+ homeostasis, lipid synthesis and many 
other processes are mitochondrial functions enabled by the interac-
tion of two or more (often dozens) molecular features and activities, 
cooperating as an integrated system. For example, the conversion of 
electrons from reducing equivalents into an electrochemical gradient 
(that is, membrane potential, ∆Ψm + ∆pH) is considered a mitochon-
drial function. Similarly, protein import requires the interaction of 
multiple proteins and activities to transport and process proteins from 
the cytoplasm to the mitochondrial matrix. Some functions include 
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complex operations that involve the collaboration of mitochondria 
with other organelles. A function that illustrates this cooperativity 
is steroidogenesis within adrenal and gonadal mitochondria. Steroi-
dogenesis requires the import of cholesterol from the cytoplasm to 
the matrix via the outer mitochondrial membrane (OMM) protein 
STAR, a redox-dependent side-chain cleavage reaction by the matrix 
P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
chemical steps uniquely positioned in mitochondria. Both steroidogen-
esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 
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Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.
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P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
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esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 

OxPhos and
ATP synthesis

Ca2+ regulation ROS emission Steroidogenesis Others

Fusion and !ssion
dynamics

Motility Mito–nuclear signalling Content release Communication

mtDNA sequence
and integrity

Molecular composition Protein dynamics Ultrastructure Morphology

mtDNAcn

500,000 — Copies — 1,000
mtDNAcn: 500

Assembled
protein complexesCardiolipin

Metabolite NAD

Cristae structure Size, length, complexity

In

Out

Nanotunnels

IMJsER

Fission Fusion

ISR

MCU

Calcium retention capacityADP ATP

Cellular oxygen
consumption

(pmol O2/cell/min)

O2
CO2
H2O

Energy expenditure

ETC complex activity Membrane potential Protein import Protein synthesis Metabolite uptake

TIM/TOM complex function∆ψm + ∆pH Transcription, translation Fatty acid translocationComplex I activity

SNPs, mutations, deletions

NADH

NAD+

H+ H+ H+

[Ca2+]cyto

O2
.–

H2O2 Cortisol

Cholesterol

Vesicularization

CPT1

For complete 
list, see Table 1

Deletion(s)

Point
mutation

Matrix

IMS

DNA release

Speed, direction

Mito content/mass

Volume density

Cellular topology

Perinuclear Peripheral

Functions

Activities

Features

Behaviours

Cell-dependent 
phenotypes

Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.



Nature Metabolism

Perspective https://doi.org/10.1038/s42255-023-00783-1

complex operations that involve the collaboration of mitochondria 
with other organelles. A function that illustrates this cooperativity 
is steroidogenesis within adrenal and gonadal mitochondria. Steroi-
dogenesis requires the import of cholesterol from the cytoplasm to 
the matrix via the outer mitochondrial membrane (OMM) protein 
STAR, a redox-dependent side-chain cleavage reaction by the matrix 
P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
chemical steps uniquely positioned in mitochondria. Both steroidogen-
esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 

OxPhos and
ATP synthesis

Ca2+ regulation ROS emission Steroidogenesis Others

Fusion and !ssion
dynamics

Motility Mito–nuclear signalling Content release Communication

mtDNA sequence
and integrity

Molecular composition Protein dynamics Ultrastructure Morphology

mtDNAcn

500,000 — Copies — 1,000
mtDNAcn: 500

Assembled
protein complexesCardiolipin

Metabolite NAD

Cristae structure Size, length, complexity

In

Out

Nanotunnels

IMJsER

Fission Fusion

ISR

MCU

Calcium retention capacityADP ATP

Cellular oxygen
consumption

(pmol O2/cell/min)

O2
CO2
H2O

Energy expenditure

ETC complex activity Membrane potential Protein import Protein synthesis Metabolite uptake

TIM/TOM complex function∆ψm + ∆pH Transcription, translation Fatty acid translocationComplex I activity

SNPs, mutations, deletions

NADH

NAD+

H+ H+ H+

[Ca2+]cyto

O2
.–

H2O2 Cortisol

Cholesterol

Vesicularization

CPT1

For complete 
list, see Table 1

Deletion(s)

Point
mutation

Matrix

IMS

DNA release

Speed, direction

Mito content/mass

Volume density

Cellular topology

Perinuclear Peripheral

Functions

Activities

Features

Behaviours

Cell-dependent 
phenotypes

Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.



Nature Metabolism

Perspective https://doi.org/10.1038/s42255-023-00783-1

complex operations that involve the collaboration of mitochondria 
with other organelles. A function that illustrates this cooperativity 
is steroidogenesis within adrenal and gonadal mitochondria. Steroi-
dogenesis requires the import of cholesterol from the cytoplasm to 
the matrix via the outer mitochondrial membrane (OMM) protein 
STAR, a redox-dependent side-chain cleavage reaction by the matrix 
P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
chemical steps uniquely positioned in mitochondria. Both steroidogen-
esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 

OxPhos and
ATP synthesis

Ca2+ regulation ROS emission Steroidogenesis Others

Fusion and !ssion
dynamics

Motility Mito–nuclear signalling Content release Communication

mtDNA sequence
and integrity

Molecular composition Protein dynamics Ultrastructure Morphology

mtDNAcn

500,000 — Copies — 1,000
mtDNAcn: 500

Assembled
protein complexesCardiolipin

Metabolite NAD

Cristae structure Size, length, complexity

In

Out

Nanotunnels

IMJsER

Fission Fusion

ISR

MCU

Calcium retention capacityADP ATP

Cellular oxygen
consumption

(pmol O2/cell/min)

O2
CO2
H2O

Energy expenditure

ETC complex activity Membrane potential Protein import Protein synthesis Metabolite uptake

TIM/TOM complex function∆ψm + ∆pH Transcription, translation Fatty acid translocationComplex I activity

SNPs, mutations, deletions

NADH

NAD+

H+ H+ H+

[Ca2+]cyto

O2
.–

H2O2 Cortisol

Cholesterol

Vesicularization

CPT1

For complete 
list, see Table 1

Deletion(s)

Point
mutation

Matrix

IMS

DNA release

Speed, direction

Mito content/mass

Volume density

Cellular topology

Perinuclear Peripheral

Functions

Activities

Features

Behaviours

Cell-dependent 
phenotypes

Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 
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Figure 1 – Immune cell subtype distribution in adult women and men. 

(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 
1077. The five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) Stacked histogram showing the leukocytes distribution derived from the 
complete blood count (CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all detected cells) quantified by flow cytometry from total peripheral 
blood leukocytes. Cell surface markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect sizes for cell subtype distribution differences 
between women (n=11) and men (n=10). P-values from non-parametric Mann-Whitney T test. The fold change comparing raw counts between women and men and shown on the 
right. Error bars reflect the 95% confidence interval (C.I.) on the effect size. (e) Distribution of cell types proportions in women and men illustrating the range of CD4+ and CD8+ 
naïve cells, B cells, and monocytes, highlighting the natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age and 
cell types proportion. n=21, p<0.05*, p<0.01**.




Naïve

Activated

Memory (CM/EM)

TEMRA

CD4 CD8



0 20 40 60

0

5

10

15

20

mono_p

b_
p

CD4+ T cells 
31.4%

CD8+ T cells 
17.9%

Al
l C

el
l T

yp
es

B cells 
6.6%

Monocytes 
12.1%

NK cells 
8.4%

Neutrophils 
7.3%

CD4+ naïve 
11.4%

CD4+ memory 

16.5%

CD8+ naïve 
6.6%

CD8+ memory 
10.2%

CD4+ CM 
11.4%

CD4+ EM 
4.9%

CD4+ TEMRA 
0.15%

CD8+ CM 
1.5%

CD8+ EM 
5.03%

CD8+ TEMRA 
3.7%

Other ~16%: 
- Unmarked leukocytes 
- Dead cells 
- Doublets

CD8+ activated 
~1.1%

CD4+ activated 
~3.5%

Figure 1

Complete blood count

Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basosophils

Neutrophils

51.0%

Lymphocytes

36.1%

Monocytes

9.6%

Eosinophils

2.3%

Basophils

0.7%

Platelets

241.3 109/L

Circulating proportions of 
cell subtypes

Women
Men

FACS

Laser

6-way cell sorting

~100M cells

n=21 (11 Women, 10 Men)
(2 African American, 7 Asian, 12 Caucasian)

20’s

Younger Older

30’s 40’s 50’s

Age

Se
x

- CBC with differential

- Hormone panel

- Blood biochemistry 

87ml

Plasma

PBMCs
F 1077

Granulocytes
RBCs

Plasma

Total  
leukocytes

F 1119

RBCs

PBMC

isolation

Cell subtype

isolation

13ml

Blood draw

H+H
+

H
+ H

+

H
+

Respiratory Chain

mtDNA

H+

Citrate 
Synthase

Nutrients

I

II

III IV

V

H
+

H+

H
+

H+

H
+

H+ H+ H+

H+ H+
H+

H
+

H
+

H+
H
+

H
+

H
+

H
+

H
+

H+
O2 H2O

H
+

Beta 
Oxidation

H
+

H
+

H
+

H
+

H
+H+

H
+

H
+

H+H+

H
+

H
+ H

+

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

rRNA
Complex I
Complex III
Complex IV
F0F1 ATP synthase
tRNAs

mRNA

non-coding

Mitochondrial phenotyping

CD45+, CD20+

CD45+, CD15+

CD45+, CD56+, 
CD3-, CD20-

CD45+, CD3-, CD20-, 
HLA-DR+, CD14++, 
CD16+, CD56-

CD45+, CD3+, CD20-, 
CD4+, CD45RA+, CCR7+

CD45+, CD3+, CD20-, 
CD4+, CD69+, CD25+

CD45+, CD3+, CD20-, 
CD4+, CCR7+, CD45RA-

CD45+, CD3+, CD20-, 
CD4+, CCR7-, CD45RA-

CD45+, CD3+, CD20-, 
CD4+, CCR7-, CD45RA+

CD45+, CD3+, CD20-, 
CD8+, CD69-, CD25-

CD45+, CD3+, CD20-, 
CD8+, CD69+, CD25+

CD45+, CD3+, CD20-, 
CD8+, CCR7+, CD45RA-

CD45+, CD3+, CD20-, 
CD8+, CCR7-, CD45RA-

CD45+, CD3+, CD20-, 
CD8+, CCR7-, CD45RA+

CD4+ naïve (%)

CD
8+

 n
aï

ve
 (%

)

Monocytes (%)

B 
ce

lls
 (%

)

CD
8+

 n
aï

ve
 ra

ng
e

CD4+ naïve range

Monocytes range

B 
ce

ll r
an

ge

0 10 20 30

0

5

10

15

20

cd4_nai_p

cd
8_
na
i_
p

b
c

d e f

-2 -1 0 1 2

Natural killers

Monocytes

CD8+ TEMRA

CD8+ CM

CD8+ T cells (all)

CD8+ naïve

CD4+ EM

CD4+ CM

Neutrophils

B cells

CD8+ EM

CD4+ TEMRA

CD4+ naïve

CD4+ T cells (all)

Fold change

women/men

1.66

1.24

1.24

2.84

1.26

1.16

-1.00

1.02

-0.81

-0.94

-0.88

-0.65

-0.44

-0.56

Sex and cell subtype abundance

*

More in WomenMore in Men

Hedges’ g

NK cells

CD4+ naïve

CD8+ naïve

CD4+ T cells (all)

CD4+ TEMRA

CD8+ EM

B cells

Neutrophils

CD4+ CM

CD4+ EM

CD8+ T cells (all)

CD8+ CM

CD8+ TEMRA

Monocytes

Age and cell subtype abundance

20 30 40 50 60
0

5

10

15

20

Age

C
D

8+
 N

aï
ve

-1.0 -0.5 0.0 0.5 1.0

CD8+ naive

CD8+ T cells (all)

CD8+ EM

B cells

CD8+ TEMRA

CD4+ naive

CD4+ CM

CD4+ T cells (all)

CD4+ TEMRA 

Monocytes

Neutrophils 

Natural killers

CD8+ CM

CD4+ EM

Spearman’s r

*
**

Increase with AgeDecrease with Age

CD8+ naïve cells

r=-0.61 
p<0.01**

%
 C

D8
+  n

aï
ve

Age

NK cells

CD4+ naïve

CD8+ naïve

CD4+ T cells (all)

CD4+ TEMRA

CD8+ EM

B cells

Neutrophils

CD4+ CM

CD4+ EM

CD8+ T cells (all)

CD8+ CM

CD8+ TEMRA

Monocytes

-

Natural variation in cell subtype abundance

Figure 1 – Immune cell subtype distribution in adult women and men. 

(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 
1077. The five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) Stacked histogram showing the leukocytes distribution derived from the 
complete blood count (CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all detected cells) quantified by flow cytometry from total peripheral 
blood leukocytes. Cell surface markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect sizes for cell subtype distribution differences 
between women (n=11) and men (n=10). P-values from non-parametric Mann-Whitney T test. The fold change comparing raw counts between women and men and shown on the 
right. Error bars reflect the 95% confidence interval (C.I.) on the effect size. (e) Distribution of cell types proportions in women and men illustrating the range of CD4+ and CD8+ 
naïve cells, B cells, and monocytes, highlighting the natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age and 
cell types proportion. n=21, p<0.05*, p<0.01**.
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Why do patients believe that “stress” 
exaggerates or cause their symptoms?



Is mitochondrial energy transformation 
capacity related to psychological states?



Psychological stress and disease

McEwen et al. PNAS 2012

COMMENTARY

Psychological Stress and Disease
Sheldon Cohen, PhD
Denise Janicki-Deverts, PhD
Gregory E. Miller, PhD

DESPITE WIDESPREAD PUBLIC BELIEF THAT PSYCHO-
logical stress leads to disease, the biomedical com-
munity remains skeptical of this conclusion. In
this Commentary, we discuss the plausibility of

the belief that stress contributes to a variety of disease pro-
cesses and summarize the role of stress in 4 major diseases:
clinical depression, cardiovascular disease (CVD), human
immunodeficiency virus (HIV)/AIDS, and cancer.

What Is Psychological Stress?
Psychological stress occurs when an individual perceives that
environmental demands tax or exceed his or her adaptive
capacity.1 Operationally, studies of psychological stress fo-
cus either on the occurrence of environmental events that
are consensually judged as taxing one’s ability to cope or
on individual responses to events that are indicative of this
overload, such as perceived stress and event-elicited nega-
tive affect. In this article, the definition of stress excludes
psychiatric disorders that may arise as downstream conse-
quences of stressful exposures and also excludes disposi-
tions often linked to stress, such as hostility and type A
behavior.

Pathways Linking Psychological Stress
to Disease
Generally, stressful events are thought to influence the patho-
genesis of physical disease by causing negative affective states
(eg, feelings of anxiety and depression), which in turn ex-
ert direct effects on biological processes or behavioral pat-
terns that influence disease risk.1 Exposures to chronic stress
are considered the most toxic because they are most likely
to result in long-term or permanent changes in the emo-
tional, physiological, and behavioral responses that influ-
ence susceptibility to and course of disease.1,2 This in-
cludes stressful events that persist over an extended duration
(eg, caring for a spouse with dementia) or brief focal events
that continue to be experienced as overwhelming long af-
ter they have ended (eg, experiencing a sexual assault).3

Behavioral changes occurring as adaptations or coping re-
sponses to stressors such as increased smoking, decreased ex-

ercise and sleep, and poorer adherence to medical regimens
provide an important pathway through which stressors in-
fluence disease risk. Stressor-elicited endocrine response pro-
vides another key pathway. Two endocrine response sys-
tems are particularly reactive to psychological stress: the
hypothalamic-pituitary-adrenocortical axis (HPA) and the
sympathetic-adrenal-medullary (SAM) system. Cortisol, the
primary effector of HPA activation in humans, regulates a
broad range of physiological processes, including anti-
inflammatory responses; metabolism of carbohydrates, fats,
and proteins; and gluconeogenesis. Similarly, catechol-
amines, which are released in response to SAM activation, work
in concert with the autonomic nervous system to exert regu-
latory effects on the cardiovascular, pulmonary, hepatic, skel-
etal muscle, and immune systems. Prolonged or repeated ac-
tivation of the HPA and SAM systems can interfere with their
control of other physiological systems, resulting in in-
creased risk for physical and psychiatric disorders.1,2

That HPA and SAM systems mediate the effects of stress
on disease is supported by experimental evidence from ani-
mal as well as human studies that show a wide variety of
stressful stimuli provoke activation of these systems. How-
ever, stress also may influence disease risk through its ef-
fects on other systems. For example, psychological stress
has been found to impair vagal tone,4 which also can in-
crease disease risk, particularly for CVD.

Effects of stress on the regulation of immune and inflam-
matory processes have the potential to influence depres-
sion; infectious, autoimmune, and coronary artery disease;
and at least some (eg, virally mediated) cancers.5 Psycho-
logical stress might alter immune function through direct
innervation of lymphatic tissue, through release of HPA and
SAM hormones that bind to and alter the functions of im-
munologically active cells, or through stress-induced be-
havioral changes such as increased smoking.

Healthy human individuals exposed to acute laboratory
stressors show an adaptive enhancement of some markers
of natural immunity but a general suppression of functions
of specific immunity.6 By comparison, exposure to real-life
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1. Measuring mitochondrial respiratory capacity in blood leukocytes
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Modified Differential Emotional Scale (mDES) Coll. Elissa Epel, Eli Puterman, Aric Prather - SAGE study

2. Measuring psychological states (mood)



Is mitochondrial respiratory capacity in PBMCs linked to mood?
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Exploratory analysis showing the strength of the association between daily emotional states and PBMCs MHI.  (A) 
Combined effect size for the association between MHI and emotional states measured either i) across the week: “Week 
average”, ii) over there days preceding PBMC collection: “Days before”, or iii) over three days after PBMC collection: “Days 
after”. Note that effect sizes are larger for time points preceding blood draw, consistent with directional relationship from mood to 
mitochondria. Emotional states were assessed in the morning and evening as described in the SI Methods. + P < 0.10, * P < 
0.05, ** P < 0.01.  (B) Individual Pearson correlation coefficients (r) between daily measures of positive or negative affect, and 
MHI measured from blood drawn at Day 4.  (C) Average MHI for tertiles of nightly negative and positive mood across the three 
days preceding mitochondrial measurements. Data is means and S.E.M., n = 27-29 per tertile.
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Mood on days preceding blood draw correlate with MHI
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How can we capture mitochondrial diversity and 
signaling in relation to psychosocial states?
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Figure 1 – Immune cell subtype distribution in adult women and men. 

(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 
1077. The five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) Stacked histogram showing the leukocytes distribution derived from the 
complete blood count (CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all detected cells) quantified by flow cytometry from total peripheral 
blood leukocytes. Cell surface markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect sizes for cell subtype distribution differences 
between women (n=11) and men (n=10). P-values from non-parametric Mann-Whitney T test. The fold change comparing raw counts between women and men and shown on the 
right. Error bars reflect the 95% confidence interval (C.I.) on the effect size. (e) Distribution of cell types proportions in women and men illustrating the range of CD4+ and CD8+ 
naïve cells, B cells, and monocytes, highlighting the natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age and 
cell types proportion. n=21, p<0.05*, p<0.01**.
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Molecular mitochondrial phenotyping across tissues

50 tissues

Anna Monzel



There are different mitochondria types — Mitotypes

Mitochondrial 
genes alone



There are different mitochondria types — Mitotypes

Monzel et al. Nat Metab 2023 
Monzel et al. (in preparation)



Conserved mitotype signatures in  
human and mouse tissues

Monzel et al. Nat Metab 2023 
Monzel et al. (in preparation)



Can we use mitotyping to understand 
disease risk or vulnerability?



Selective neurodegeneration and neuroinflammation 
in the brain stem in Ndufs4 KO mice

Quintana et al., JCI 2012 Aguilar et al., Glia 2022

Selective degeneration in the 
vestibular nuclei area of the 

brain stem

Neuronal degeneration is 
mediated by microglia

Anna Monzel
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Figure 1 – Immune cell subtype distribution in adult women and men. 

(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 
1077. The five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) Stacked histogram showing the leukocytes distribution derived from the 
complete blood count (CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all detected cells) quantified by flow cytometry from total peripheral 
blood leukocytes. Cell surface markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect sizes for cell subtype distribution differences 
between women (n=11) and men (n=10). P-values from non-parametric Mann-Whitney T test. The fold change comparing raw counts between women and men and shown on the 
right. Error bars reflect the 95% confidence interval (C.I.) on the effect size. (e) Distribution of cell types proportions in women and men illustrating the range of CD4+ and CD8+ 
naïve cells, B cells, and monocytes, highlighting the natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age and 
cell types proportion. n=21, p<0.05*, p<0.01**.
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The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) Study
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n=110, 4 groups including mtDNA defects



Growth differentiation factor 15

GDF15



GDF15 is the most significantly upregulated protein  
in human aging

Tanaka et al. Aging Cell 2020

Null hypothesis

50:50

Lehallier et al. Nature 2019



What does GDF15 mean to the organism?

Expressed in >90%  
of somatic tissues

Triggered by mito 
OxPhos defects (ISR)

Signals on the brainstem, 
energy conservation

GDF15

Activates canonical 
stress axes

GDF15

Hypothalamic-pituitary 
adrenal (HPA) axis 

CORTISOL

Sympathetic activation 
Catecholamines (NE)

Lockhart et al. Endocr Rev 2020



What does GDF15 mean to the organism?

Expressed in >50% 
somatic tissues

Triggered by cellular 
stressors (ISR)

Signals on the brainstem, 
energy conservation

GDF15

Activates canonical 
stress axes

GDF15

Hypothalamic-pituitary 
adrenal (HPA) axis 

CORTISOL

Sympathetic activation 
Catecholamines (NE)

Monzel et al. Life Metab 2024

Psychological stress 
transiently increases 

GDF15 in humans



Stress hormones & metabolites are detectable in saliva

Can we quantify cf-mtDNA and other “mitokines”  
in human saliva?

If so: this would make possible epidemiological and  
high-temporal resolution timecourse studies of GDF15

Shannon Rausser Caroline Trumpff
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Huang, Trumpff et al. (BioRxiv 2024)

Why do patients believe that “stress” 
exaggerates or cause their symptoms?

Stress

OxPhos 
defects

Shared 
biology  
(GDF15)

Disease onset  
& progression



INDIVIDUALS

ORGANS

CELLS

MITOCHONDRIA 
& ORGANELLES

COMMUNITIES

Picard and Sandi. Neurosci Biobehav Rev (2021)
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Figure 1 – Immune cell subtype distribution in adult women and men. 

(a) Overview of participant demographics, blood collection, processing, and analysis pipeline. Total leukocytes were isolated using Ficoll 1119 and PBMCs were isolated on Ficoll 
1077. The five mitochondrial features analyzed on the mitochondrial phenotyping platform are colored. (b) Stacked histogram showing the leukocytes distribution derived from the 
complete blood count (CBC). (c) Diagram illustrating the proportion of circulating immune cell subtypes (% of all detected cells) quantified by flow cytometry from total peripheral 
blood leukocytes. Cell surface markers and subtype definitions are detailed in Supplemental Table 1. (d) Forest plot of the effect sizes for cell subtype distribution differences 
between women (n=11) and men (n=10). P-values from non-parametric Mann-Whitney T test. The fold change comparing raw counts between women and men and shown on the 
right. Error bars reflect the 95% confidence interval (C.I.) on the effect size. (e) Distribution of cell types proportions in women and men illustrating the range of CD4+ and CD8+ 
naïve cells, B cells, and monocytes, highlighting the natural variation among our cohort. Each datapoint reflects a different individual. (f) Spearman’s r correlation between age and 
cell types proportion. n=21, p<0.05*, p<0.01**.
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Are brain mitochondrial phenotypes linked to 
psychosocial exposures & experiences in humans?



Caroline Trumpff



Caroline Trumpff



Multiple linear regression adjusted for sex and cognitive status; cell type abundances
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Psychobiological associations in human brain mitochondria
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How are mitochondria distributed, and do they 
specialize across the human brain?



MitoBrainMap v1.0 
A multi-function mitochondrial atlas of a single  
human coronal brain section at fMRI resolution



MitoBrainMap v1.0 
A multi-function mitochondrial atlas of a single  
human coronal brain section at fMRI resolution

Eugene Mosharov



Physical voxelization 
of the human brain 
at fMRI resolution

3mm

3mm



Quality control on 702 human brain voxels

3mm

Eugene Mosharov



OxPhos and mtDNA profiling

Corey Osto, Linsey Stiles, Orian Shirihai 
Ayelet Rosenberg



1.
8

1.
6

1.
4

1.
2

1.
0

0.
8

0.
6

O
xP

ho
s 

sp
ec

ia
liz

at
io

n3.0

2.5

2.0

1.5

1.0

0.5

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Mitochondrial profiling of 703 physical 
brain voxels at fMRI resolution Eugene Mosharov 
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Mosharov et al. (under review)



Building a predictive model of brain mitochondria

Diffusion imaging

T1/T2 structural

fMRI-BOLD
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MitoBrainMap v1.0 
A multi-function mitochondrial atlas of a single  
human coronal brain section at fMRI resolution

Eugene Mosharov

Closing the gap between organellar bioenergetic profiling and  
whole-brain neuroimaging modalities (fMRI, PET, CBV, DWI, etc)

3mm



Central dogma model of 
mitochondrial diseases

mtDNA or nDNA  
mutation

Mito cocktail 
Awaiting gene therapy 

No treatment for most sx

Bottom-up  
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in vivo?
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Sercel et al. Nat Metab 2024



Energy constraint model 
(Hypermetabolism)

Hypermetabolism-reducing behaviors 
Understanding of Sx, prevention 

New therapies?

Energy-based,  
systems thinking
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MitoOxPhos defect

Other mito functions

Hypermetabolism

Glycolysis,  
   other pathways

Compensation

Biological aging ?

⬇Maintenance  
    & repair ?

Psychosocial factors 
(stress, support)

⬇Cellular 
efficiency

⬆ISR 
⬆Biogenesis

Hyperkinetic 
organ network

e.g., ⬆EE  
drives HR

⬆Cost of  
    heteroplasmy 

e.g., Cori cycle 
(lactate to liver)

⬇Physiological 
efficiency

(De)Prioritization of organ systems 
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