

Mitochondrial psychobiology in immune and brain cells

Martin Picard, Ph.D. Department of Psychiatry, Division of Behavioral Medicine Department of Neurology, H. Houston Merritt Center Columbia Translational Neuroscience Initiative New York State Psychiatric Institute (NYSPI) Robert N Butler Columbia Aging Center COLUMBIA

COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

MITOCHONDRIAL PSYCHOBIOLOGY

Mitochondrial psychobiology examines the <u>interactions</u> between **psychological states** and the **molecular and energetic processes** within mitochondria

Curr Opin Behav Sci (2019)

Mitochondria are signal-processing units

"The organism is integrated into a larger system of information exchange [...]. The brain and the rest of the organism are not qualitatively different in their ability to compute information, but show only qualitative differences in their purposiveness." — *Herbert Weiner*, **Perturbing the Organism** (1992)

Signal transducing mitochondrion in. SENSING SIGNALING **INTEGRATION** Incoming data))) Uutgoing data

"Mitochondria are the processor of the cell"

Processing System — MIPS

Mitochondrial Information

Dynamic remodeling of mito networks

Mitochondria and hormones?

Mitochondria synthesize glucocorticoid and sex hormones

Picard, McEwen, Epel, Sandi. Front Neuroendocrinol 2018

Mitochondria cause unique stress response signatures

Different mitochondria types (mitotypes)

Mitochondrial phenotypes

Monzel et al. Nat Metab 2023

Perspective

Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction

How can we capture mitochondrial diversity and signaling in relation to psychosocial states?

Mitochondrial phenotypes (mitotypes)

Rausser et al. eLife 2021

Cell type-specific estimates of effect sizes, dynamics, sex & age, biomarkers Foundational data to design human mitochondrial studies

Rausser et al. eLife 2021

Why do patients believe that "stress" exaggerates or cause their symptoms?

$\textbf{Stress} \rightarrow \textbf{Mitochondria} \rightarrow \textbf{Disease}$

Well being \rightarrow Mitochondria \rightarrow Health ?

Picard et al. Nat Rev Endocrinol 2014 Kelly et al. BioRxiv 2024 Is mitochondrial energy transformation capacity related to psychological states?

Psychological stress and disease

Psychological Stress and Disease

Sheldon Cohen, PhD	
Denise Janicki-Deverts, PhD	
Gregory E. Miller, PhD	

ESPITE WIDESPREAD PUBLIC BELIEF THAT PSYCHOlogical stress leads to disease, the biomedical community remains skeptical of this conclusion. In this Commentary, we discuss the plausibility of the belief that stress contributes to a variety of disease processes and summarize the role of stress in 4 major diseases: clinical depression, cardiovascular disease (CVD), human immunodeficiency virus (HIV)/AIDS, and cancer.

Cohen et al. JAMA 2007

Brain on stress: How the social environment gets under the skin

Bruce S. McEwen¹

Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065

McEwen et al. PNAS 2012

Placebos in RCTs?

G Slavich. Annu Rev Clin Psychol 2020

1. Measuring mitochondrial respiratory capacity in blood leukocytes

2. Measuring psychological states (mood)

For each of the emotions listed below, please tell us how much you have felt that emotion this evening.

Not at all	A little bit	Moderately	Quite a bit	Extremely
0	1	2	3	4
1. What is the m	ost amused, fun-lov i	ng, or silly you felt?		
2. What is the m	ost angry, irritated , o	or annoyed you felt?		
3. What is the m	ost ashamed, humili	ated, or disgraced you	ı felt?	
4. What is the m	ost awe, wonder, or	amazement you felt?		
5. What is the m	ost contemptuous, s	cornful, or disdainful	you felt?	
6. What is the m				
7. What is the m	ng you felt?			
8. What is the m	ost grateful, appreci	ative, or thankful you	felt?	
9. What is the m	ost guilty, repentant	, or blameworthy you	felt?	
10. What is the r	most hate, distrust , o	or s uspicion you felt?		

Is mitochondrial respiratory capacity in PBMCs linked to mood?

How can we capture mitochondrial diversity and signaling in relation to psychosocial states?

Molecular mitochondrial phenotyping across tissues

Anna Monzel

There are different mitochondria types — Mitotypes

Mitochondrial genes alone

There are different mitochondria types — Mitotypes

Monzel et al. (in preparation)
Conserved mitotype signatures in human and mouse tissues

Monzel et al. *Nat Metab* 2023 Monzel et al. (in preparation) Can we use mitotyping to understand disease risk or vulnerability?

Selective neurodegeneration and neuroinflammation in the brain stem in Ndufs4 KO mice

Quintana et al., JCI 2012

Aguilar et al., Glia 2022

Anna Monzel

Mitotyping the mouse brain

Allen mouse brain atlas

In situ hybridization 2232 brain regions 948 mitochondrial genes

Anna Monzel

CI subunits

VN

CI subunits

g **=** 1.6

VN

Mitochondria in the vestibular nucleus are enriched in complex I-related pathways

How can we capture mitochondrial diversity and signaling in relation to psychosocial states?

n=110, 4 groups including mtDNA defects

BASZUCKI

Growth differentiation factor 15 GDF15

GDF15 is the most significantly upregulated protein in human aging

Tanaka et al. Aging Cell 2020

Lehallier et al. Nature 2019

What does GDF15 mean to the organism?

What does GDF15 mean to the organism?

Monzel et al. Life Metab 2024

Stress hormones & metabolites are detectable in saliva

Can we quantify cf-mtDNA and other "mitokines" in human saliva?

If so: this would make possible epidemiological and high-temporal resolution timecourse studies of GDF15

Shannon Rausser Caroline Trumpff

Saliva GDF15 dynamics

Rachel Haahr Shannon Rausser Hannah Huang Caroline Trumpff

n=1, male participant, 53 days From Trumpff et al. *PNEC* 2019

Time from TSST (min)

Why do patients believe that "stress" exaggerates or cause their symptoms?

Are brain mitochondrial phenotypes linked to psychosocial exposures & experiences in humans?

Caroline Trumpff

Caroline Trumpff

Psychobiological associations in human brain mitochondria

Multiple linear regression adjusted for sex and cognitive status; cell type abundances Trumpff et al. *BioRxiv* 2023

Trumpff et al. *BioRxiv* 2023

Phil de Jager

Anna Monzel

Mitochondrial PsychoBiology Lab

OUR RESEARCH

necular processes within mitochondria with the human experience

Collaborators

Mitochondrial Biology & Medicine

Michio Hirano Catarina Quinzii CUIMC Neurology

Brett Kaufman Pittsburgh University

Gyuri Hajnóczy Erin Seifert Thomas Jefferson University

Orian Shirihai Mike Irwin UCLA

Vamsi Mootha Rohit Sharma Harvard & MGH

Edward Owusu-Ansah CUIMC Physiology & Biophysics

Ryan Mills University of Michigan

Gilles Gouspillou

Tonio Enriques Madrid

MiSBIE & MDEE Teams

Kris Engelstad Catherine Kelly Shufang Li Anna Monzel Mangesh Kurade

Psychosocial Sciences

Robert-Paul Juster Université de Montréal

Elissa Epel Jue Lin Aric Prather Ashley Mason UCSF

Eli Puterman

Clemens Kirshbaum Dresden University

Anna Marsland Rebecca Reed Pittsburgh University

Suzanne Segerstrom University of Kentucky

David Almeida Penn State University

Energy expenditure & metabolism

Marie-Pierre St-Onge Dympna Gallagher Michael Rosenbaum CUIMC Medicine

Chris Kempes Santa Fe Institute

Herman Pontzer Duke

Sam Urlacher Baylor

Brain Neurobiology & Neuroimaging

Phil De Jager Hans Klein Vilas Menon Stephanie Assuras CUIMC Neurology

Eugene Mosharov Dave Sulzer John Mann Maura Boldrini Mark Underwood Gorazd Rosoklija Andrew Dwork Chris Anacker Dani Dumitriu Catherine Monk Vincenzo Lauriola Richard Sloan Caroline Trumpff CUIMC Psychiatry

Tor Wager Dartmouth

Michel Thiebaut de Schotten CNRS Bordeaux

Manish Saggar Stanford

Anne Grunewald University of Luxembourg

Carmen Sandi

Efrat Levy Pasquale D'acunzo

Biological Aging

Steve Horvath Morgan Levine Altos

Albert Higgins-Chen Yale

Marie-Abèle Bind Harvard

Luigi Ferrucci NIA Intramural

Alan Cohen Dan Belsky Linda Fried CUIMC Mailman & Aging Center

BASZUCKI

The Nathaniel wy

National Institute of Mental Health

National Institute of General Medical Sciences

National Institute on Aging

Downloadable presentation slides

Mitochondrial PsychoBiology Lab

How are mitochondria distributed, and do they specialize across the human brain?

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

Eugene Mosharov

Physical *voxelization* of the human brain *a*t fMRI resolution

Quality control on 702 human brain voxels

Eugene Mosharov

OxPhos and mtDNA profiling

3x triplicate 3x triplicate negative plates control plates

Corey Osto, Linsey Stiles, Orian Shirihai Ayelet Rosenberg

Mitochondrial profiling of 703 physical brain voxels at fMRI resolution

Eugene Mosharov Ayelet Rosenberg Michel Thiebaut de Schotten

Mosharov et al. (under review)

Building a predictive model of brain mitochondria

dorsal

Occipital lobe (mean±s.D.)

Feature	Observed	Predicted
СІ	1.43±0.27	1.41±0.26
CII	1.25±0.16	1.35±0.14
CIV	1.44±0.17	1.31±0.24
MitoD	1.17±0.02	1.15±0.07
TRC	1.39±0.15	1.32±0.18
MRC	1.22±0.13	1.23±0.12

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

Closing the gap between organellar bioenergetic profiling and whole-brain neuroimaging modalities (fMRI, PET, CBV, DWI, etc)

Eugene Mosharov

Sercel et al. Nat Metab 2024

