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ARTICLE INFO ABSTRACT

Keywords: Objective: We have previously found that acute psychological stress may affect mitochondria and trigger an
Psychological stress increase in serum mitochondrial DNA, known as circulating cell-free mtDNA (ccf-mtDNA). Similar to other stress
Mitochondria reactivity measures, there are substantial unexplained inter-individual differences in the magnitude of ccf-
CCf'mtDNA_ . mtDNA reactivity, as well as within-person differences across different occasions of testing. Here, we sought to
ﬁzfsls(i;zammy identify psychological and physiological predictors of ccf-mtDNA reactivity using machine learning-based
Machine learning multivariate classifiers.
Method: We used data from serum ccf-mtDNA concentration measured pre- and post-stress in 46 healthy midlife
adults tested on two separate occasions. To identify variables predicting the magnitude of ccf-mtDNA reactivity,
two multivariate classification models, partial least-squares discriminant analysis (PLS-DA) and random forest
(RF), were trained to discriminate between high and low ccf-mtDNA responders. Potential predictors used in the
models included state variables such as physiological measures and affective states, and trait variables such as
sex and personality measures. Variables identified across both models were considered to be predictors of ccf-
mtDNA reactivity and selected for downstream analyses.
Results: Identified predictors were significantly enriched for state over trait measures (X*> = 7.03; p = 0.008)
and for physiological over psychological measures (X* = 4.36; p = 0.04). High responders were more likely to
be male (X2 = 26.95; p < 0.001) and differed from low-responders on baseline cardiovascular and autonomic
measures, and on stress-induced reduction in fatigue (Cohen's d = 0.38 —0.73). These group-level findings also
accurately accounted for within-person differences in 90% of cases.
Conclusion: These results suggest that acute cardiovascular and psychological indices, rather than stable in-
dividual traits, predict stress-induced ccf-mtDNA reactivity. This work provides a proof-of-concept that machine
learning approaches can be used to explore determinants of inter-individual and within-person differences in
stress psychophysiology.

1. Introduction response that increases cellular energy demand and involves mi-
tochondrial recalibrations (Picard et al., 2018). While this stress re-
Psychological stress triggers a coordinated multi-systemic stress sponse has evolved to promote adaptation and survival (Weiner, 1992),
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its chronic activation has been associated with increased disease risk
(Cohen et al., 2007, 2019; McEwen, 1998). To understand the basis for
inter-individual differences in stress responses and the potential sub-
sequent disease risk, efforts have been devoted to two main areas: i)
mapping the biological consequences and cellular mechanisms of stress
pathophysiology, and ii) identifying the psychobiological determinants
at the origin of inter-individual and within-person differences in stress
reactivity.

Findings from pre-clinical and clinical studies suggest that psycho-
logical stress may affect the function and structural integrity of mi-
tochondria (Cai et al., 2015; Liu and Zhou, 2012; Magarinos et al.,
1997; reviewed in Picard and McEwen, 2018). Mitochondria are life
sustaining organelles involved in energy production and intracellular
signaling, and they contain their own genome - the circular mi-
tochondrial DNA (mtDNA). Under some circumstances, the mtDNA can
be released extracellularly, known as circulating cell-free mtDNA (ccf-
mtDNA). Due to its bacterial origin, the mtDNA is immunogenic and
triggers inflammation in model systems (West and Shadel, 2017; Zhang
et al., 2010) — not unlike the pro-inflammatory state induced by acute
psychological stress (Marsland et al., 2017). Physical stressors such as
exercise, physical trauma (i.e., injury), and infection are also associated
with both higher circulating levels of ccf-mtDNA and increased per-
ipheral markers of inflammation (Boyapati et al., 2017; Nakahira et al.,
2013; Stawski et al., 2017; Zhang et al., 2010), suggesting that ccf-
mtDNA in humans is a physiologically meaningful signaling molecule.

Interestingly, in relation to psychological states, elevated ccf-
mtDNA levels have also been described in cross sectional studies of
psychiatric populations such as suicide attempters (Lindqvist et al.,
2016) and patients with major depressive disorder (Lindqvist et al.,
2018). Moreover, we recently showed that experimentally-induced
acute psychological stress triggers a 2-3-fold increase in serum ccf-
mtDNA within 30 min (Trumpff et al., 2019). Our findings are con-
sistent with another recent study showing a rapid 1.7-fold increase in
plasma ccf-mtDNA after induced psychological stress (Hummel et al.,
2018), reinforcing initial evidence for a possible link between psycho-
logical states and ccf-mtDNA. The acute release of ccf-mtDNA, its
ability to be transported through the blood, and its target effect via
receptors on immune cells thus suggests a previously unrecognized
“hormonal” function of ccf-mtDNA. However, little is known about
what regulates its release.

To assess the factors contributing to ccf-mtDNA reactivity, classical
statistical inference approaches (e.g., regression models) are not well-
suited for the following reasons. First, we have no prior knowledge
about the potential predictors of ccf-mtDNA reactivity and restricting
our analyses to a specific set of variables would introduce substantial
bias. Second, simultaneously considering multiple cardiovascular, au-
tonomic, inflammatory, physiological, affective, psychosocial, and de-
mographic variables introduces a problem of high-dimensionality
where the number of variables approaches the sample size, for which
inference-based statistical approaches are inadequate. In such case,
independently testing each variable would also introduce the problem
of multiple testing. Finally, our goal is to identify groups of variables
(i.e., a pattern) capable of predicting ccf-mtDNA reactivity not only in
this sample but also more generally in healthy women and men. But
classical inference-based models are designed to maximize the fit to the
current sample without regard to future generalizability. As such, tra-
ditional regression-based analyses would likely lead to data overfitting,
with the natural potential drawback of limited replicability in future
studies (for a review on this issue see (Yarkoni and Westfall, 2017)). In
comparison, machine learning models are designed to find general-
izable predictive patterns in the data (Bzdok et al., 2018). Machine
learning is also an ideal data-driven approach to build prediction
models from high-dimensionality datasets, which avoids fishing ex-
peditions and P hacking (Simmons et al., 2011). In other fields such as
the neurosciences, machine learning has successfully been used to
identify predictive patterns of psycho-physiological outcomes (Kragel
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et al.,, 2018). In the present study, we therefore opted for a machine
learning approach to identify predictors of ccf-mtDNA reactivity.

To ensure the robustness of the identified predictors, two or more
machine learning classifiers can be used, which leverages the overlap
across models (Gromski et al., 2015). Two models in particular, partial
least squares discriminant analysis (PLS-DA) (Wold et al., 2001) and
Random Forest (RF) (Breiman, 2001) are mathematically distinct and
represent complementary approaches that optimize variable selection
when used conjointly (Menze et al., 2009). PLS-DA performs well to
reduce high dimensional datasets, and RF is particularly good at elim-
inating irrelevant variables (Menze et al., 2009). Here, we therefore
combined results of two machine learning-based classifiers, PLS-DA and
RF, on data collected across two occasions of testing (Trumpff et al.,
2019) to investigate psychological, behavioral, and physiological pre-
dictors of ccf-mtDNA reactivity induced by socio-evaluative stress in
healthy adults.

2. Method
2.1. Participants

Data and samples of this study were obtained from the Vaccination
and Immunity Project, a longitudinal study investigating the associa-
tion of psychosocial, physiological and behavioral factors with antibody
response to hepatitis B vaccination in a middle-age adult population
(Carroll et al., 2011; Prather et al., 2009). An analysis of the effects of
stress reactivity on ccf-mtDNA levels have been performed in these
samples (Trumpff et al., 2019). A total of 46 healthy middle-aged adult
participants (28 men, 18 women, 88% Caucasian, 41-58 years old)
were included in the present study. Participants having at least paired
observations for task and + 30 min at session 1 or session 2 (N = 46)
were included in the analyses, 64% completed both visits for a total of
74 observations. Informed consent was obtained in compliance with
guidelines of the University of Pittsburgh Institutional Review Board.

2.2. Experimental stress procedure

The detailed study design is illustrated in Supplemental Information
(Fig. S1) and has been previously reported (Carroll et al., 2011; Prather
et al., 2009; Trumpff et al., 2019). In brief, participants attended two
laboratory sessions scheduled 1 month apart. First, subjects completed
a battery of questionnaires and their height and weight were measured
to calculate body mass index (BMI; kg/m2). Then they were accom-
panied to a testing chamber where an intra-venous catheter was in-
serted into the antecubital fossa of one arm for the collection of blood
samples. On the other arm, an occluding cuff was placed for automated
measurement of heart rate (HR), systolic blood pressure (SBP) and
diastolic blood pressure (DBP) (Critikon Dinamap 8100 Vital Signs
Monitor, Tampa, FL). Participants were also fitted with a respiration
strain gauge belt around the thorax and three electrocardiogram elec-
trodes applied to each shoulder and the xiphoid process for the con-
tinuous assessment of respiration rate and heart rate, respectively. After
instrumentation, participants rested for a 30-min period. Baseline blood
pressure (BP) and HR were recorded every 90 s for the last 6 min of this
rest period (4 readings). Then, 20 ml of blood was drawn and mood
states (POMS) were assessed. Next, participants were asked to perform
a public speaking task previously described in (Carroll et al., 2011;
Prather et al., 2009; Trumpff et al., 2019). Mood states (POMS) were
assessed and post-task blood samples were drawn immediately fol-
lowing completion of the task (20 ml) and again after the subject had
rested quietly for 30 min (20 ml). At the second laboratory visit, the
same procedure took place except that subjects were told that their
“performance on the first speech task was slightly below average when
compared with other participants" speeches to avoid habituation. At
both sessions, a similar increase in negative affect (anxiety, anger) and
decrease in positive affect (calm, well-being) was observed (Trumpff
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et al., 2019). Physiological reactivity, including elevations in SBP, DBP,
and HR were also similar across sessions (see Fig. S2).

EKG signals were digitized at a sampling rate of 1000 Hz using
CardioPro acquisition software (Thought Technology, Plattsburgh, NY).
Time and frequency domain measures of heart rate variability (HRV)
were continuously acquired. Time domain analyses provide the root
mean of successive differences in interbeat intervals (RMSSD). Utilizing
the Task Force guidelines (Force, 1996), spectral analyses was per-
formed on the beat-to-beat intervals derived from the ECG data col-
lection to obtain both low-frequency (LF) and high-frequency (HF)
components using a Point Process statistical method (Weber et al.,
1991).

2.3. Blood processing

Blood samples were allowed to clot, centrifuged at 1000g for
10 min, and the serum was frozen at — 80 °C until further processing. IL-
6 levels were determined using a high sensitivity quantitative sandwich
enzyme immunoassay kit (R & D Systems) as described previously (see
(Carroll et al., 2011)) and log transformation was applied to normalize
raw score distributions of the IL-6 values. Sample handling and pro-
cessing have been described previously (Trumpff et al., 2019). In short,
serum samples were centrifuged at 2000 x g for 5min, DNA was ex-
tracted from the supernatant, and circulating levels of mtDNA mea-
sured against a pooled standard curve by duplex quantitative real-time
PCR (qPCR) with Tagman chemistry (Belmonte et al., 2016).

2.4. Salivary cortisol

Saliva samples were collected using oral swabs (Salimetrics) at the
end of the baseline, task and recovery periods. Saliva samples were
stored at —70°C and sent in batches to be analyzed by the
Biopsychology Department at the Technical University of Dresden,
Germany. Cortisol level was then determined using a time-resolved
immunoassay with fluorometric end point detection (Dressendorfer
et al., 1992).

2.5. Questionnaires

Mood states at baseline, task and +30 min were assessed using the
Profile of Mood States (POMS) (McNair, 1971), with item selection
based on Usala and Hertzog’s factor analysis of item loading (Usala and
Hertzog, 1989). This questionnaire assesses current mood on a scale
ranging from 0 (not at all) to 4 (extremely) and provides a score for
anxiety (e.g., tense, nervous, uneasy, on edge), anger (e.g., angry, re-
sentful, hostile), depression (e.g., sad, unhappy, depressed), calm (e.g.,
relaxed, comfortable, calm, at ease), fatigue (e.g., tired, sluggish,
sleepy, fatigued, worn out), vigor (e.g., lively, energetic, full of pep),
and well-being (e.g., cheerful, happy, pleased).

Depressive symptoms were assessed using the Beck depression in-
ventory (BDI) (Beck et al., 1996) and state anxiety was assessed using
the State-Trait Anxiety Inventory (STAI) (Spielberger et al., 2017).
Perceived stress was measured using the Perceived Stress Scale (PSS)
(Cohen et al.,, 1994). UCLA Loneliness Scale was used to measure
loneliness (Russell et al., 1980). Negative and positive affect were
measured using the Positive and Negative Affect Schedule (PANAS)
scale (Watson et al., 1988). Personality measures included Goldberg’s
Big-5 Factor Scales (Goldberg, 1992) and the Behavioral Inhibition
Scale (BIS) (Carver and White, 1994). Participants completed a five
items rumination measure assessing the extent of state rumination in
response to the stressor, questions from the State Rumination Ques-
tionnaire — short form (Treynor et al., 2003) were adapted to ask about
participant’s thoughts about the speech task.

The Paffenbarger physical activity index questionnaire was used to
estimate physical activity level (usual kilocalories spent weekly)
(Paffenbarger JR et al., 1978). Sleep quality was determined using the
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Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989). Partici-
pant’s age, gender, race and menopausal status were determined
through self-report. The complete set of psychological and physiolo-
gical variables tested is available as Supplementary Information.

2.6. Statistical analyses

Each participant visit (N = 74) was treated as a unique observation.
The change in ccf-mtDNA levels after stress was computed using the
delta task to recovery (post-stress minus pre-stress). The distribution of
response was then divided into tertiles to define low, medium, and high
responder groups. Multivariate classification algorithms were trained to
discriminate between the top tertile or “high responder”, and the
bottom tertile “low responder”, using 56 physiological and psycholo-
gical variables. Each variable was further classified as either trait or
state to analyze the enrichment for specific types of variables among the
final predictors.

Partial least squares discriminant analysis (PLS-DA) (Wold et al.,
2001) and random forest (RF) (using 700 trees and 7 predictors)
(Breiman, 2001) classification models were used to extract important
variables predictive of group affiliation. Models were run using Meta-
boanalyst 3.0, an open source web software (Xia and Wishart, 2016).
PLS-DA is a technique allowing the separation of two or more groups by
relating two data matrices — X (the raw data used to separate the
groups) and Y (the groups to be separated) by finding a linear subspace
of the explanatory variables. This allows prediction of group affiliation
(variable Y) based on a number of partial least square (PLS) compo-
nents. The PLS components hereby describe the behavior of the groups
as they span the mathematical subspace where the explanatory vari-
ables are projected (Wold et al., 2001). An advantage of this method is
that it handles highly collinear and noisy datasets (Gromski et al.,
2015). In comparison, RF is a machine learning algorithm that gen-
erates multiple decision trees to maximize the accurate grouping of
individuals among groups. First, the total dataset is split into two
groups: two-thirds of the data is used to generate a training set and one
third to generate a test set. The procedure then uses bootstrapping of
random sampling with replacement of individuals. The training set is
used to build the decision trees, and the test set is used to define clas-
sification accuracy based on these trees (Breiman, 2001). RF handles
large datasets and is robust to over-fitting and outliers (Gromski et al.,
2015).

The analytical plan was established prior to performing any ana-
lysis, including selection of the specific machine learning classifiers,
focus on overlapping variables across models, and downstream uni-
variate statistical comparisons restricted to overlapping variables.
Participants with missing values for > 20% of the variables were ex-
cluded (which included n = 2 low responders and n = 2 high re-
sponders). The variables predicting group affiliation were ranked by
metrics reflecting the importance of each variable to predict group af-
filiation respectively - Variable Importance in Projection (VIP) score of
the first component for PLS-DA; Mean Decrease Accuracy for RF. The
top 15 variables were compared and only overlapping variables across
both classifiers were identified as “predictors” and selected for further
analysis. As a sensitivity analysis, to verify that our reactivity findings
were not biased by baseline levels, we repeated the same analysis using
baseline-adjusted delta variables and found similar results. For the
continuous variables, group differences between low and high re-
sponders in the selected predictors were statistically assessed using non-
parametric Mann-Whitney test for independent samples (missing values
were kept as missing) and effect sizes were calculated as Hedges' g. The
strength of the association between the selected predictors was assessed
with Spearman’s rho. Group differences in categorical variables was
tested using Chi Square. Continuous predictors were plotted in relation
to each other using 2D scatterplots of the mean ( = SEM) to visualize
the extent of separation of low, medium and high responders and dose-
response effects between predictors and ccf-mtDNA reactivity
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categories.

Finally, in a subset of participants classified as low responders at
one session and high responders at the other (n = 4), we tested if the
identified predictors at the group level could “predict” when a given
person would have a low or high ccf-mtDNA response. The percent
difference in each predictor between the low and high responder groups
(e.g., 5% higher heart rate in high responders than low responders) was
compared to the percent difference between the “low” and “high” ses-
sion for each person. Then we calculated the proportion of cases where
group-level predictors correctly matched (i.e., “generalized”) within-
person divergent responses across the two sessions. Additionally, we
repeated the main analysis while excluding the four divergent re-
sponders from the total sample to ensure that the divergent responders
were not driving the results of the main group-level analysis. Statistical
analyses were performed using SAS statistical software 9.3 (SAS
Institute Inc., Cary, NC, USA), SPSS (version 24) and Prism 7.0
(Graphpad).

2.7. Functional classification and enrichment analysis

Prior to analyses, each variable was functionally classified as either
a trait or state measure, and as either a physiological or psychological
measure (all variables and their classification terms are listed in the
Supplementary Information). We then performed an enrichment analysis
to determine whether some categories of variables were over-re-
presented in the final set of identified predictors. This enrichment
analysis is a similar approach to those used on high dimensional omics
data to define over- or under-representation of specific biological
pathways (Huang et al., 2008). A Chi Square test was performed to
compare the proportion of trait or state variables between the identified
predictors compared to the total list of 56 variables initially used as
input to the models.

3. Results

We previously showed that a brief socio-evaluative stress elevates
serum ccf-mtDNA (Fig. 1A) (Trumpff et al., 2019), but noted that the
magnitude of ccf-mtDNA response to stress varied substantially across
participants. Here, we first separated the distribution of pre- to post-
stress change in ccf-mtDNA (delta) into tertiles of responses (Fig. 1B).
The bottom and top tertiles represent low and high responders, re-
spectively. We then compared groups over a comprehensive and un-
biased set of psychophysiological measurements, self-reported psycho-
social measures, and demographic factors, for a total of 56 variables.
The distribution of these variables is illustrated in Fig. 2.

A
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3.1. Common predictors of ccf-mtDNA responses identified by PLS-DA and
RF classifiers

As illustrated by the physical separation of low and high responders
in Fig. 1C, the PLS-DA model yielded a moderate level of discrimination
between groups. This demonstrated that information contained within
the 56 variables is sufficient to partially discriminate between in-
dividuals who release low or high levels of ccf-mtDNA upon psycho-
logical stress. The prediction accuracy metrics for PLS-DA were: accu-
racy = 0.62, R*=0.50, Q> = -0.10 and for RF out of bag
error = 0.478, reflecting relatively poor performance characteristics by
each model separately. Therefore, the top 15 predictors from each
model were ranked by their ability to discriminate between the groups
and compared (Fig. 2B). The convergence of both models yielded a
reduced set of 8 overlapping measures identified as predictors for
subsequent analyses (Fig. 2C).

3.2. Physiological state characteristics are over-represented among
predictors

The identified predictors included 1 trait and 7 state variables, re-
presenting a significant enrichment or over-representation for state
characteristics (X*> = 7.03; p = 0.008). This suggests that ccf-mtDNA
reactivity may depend more on the current state of the person at the
time of stress, rather than on stable individual traits. Moreover, 6 of the
7 state variables were classified as physiological, representing a sig-
nificant enrichment for physiological over psychological characteristics
(X2 = 4.36; p = 0.04).

Among low responders, 60% were women and 40% were men. In
contrast, among high responders only 21% were women and 79% were
of men (X? =26.95; p < 0.0001), establishing sex as the only trait
predictor. Physiologically, high responders were characterized by lower
baseline DBP (d = 0.73 compared to low responders) and SBP
(d = 0.45), and higher HR (d = 0.41). High responders also had lower
baseline heart rate variability (HRV) measured as the root mean
squared of successive differences (HRV-RMSSD, d = 0.47) and a lower
baseline low frequency HRV (LF-HRV, d = 0.57). Whereas stress pro-
duced the expected reduction in HRV-RMSSD, this reduction was
blunted in high responders (d = 0.56). Finally, the only finding related
to psychological factors showed that the stress-induced reduction in
fatigue was more substantial in high responders than low responders
(d = 0.38). Inter-correlation between selected predictors as continuous
variables are reported in Table 1. In sensitivity analyses where we re-
peated the same analysis with baseline-adjusted delta values for HR, BP,
HRV and POMS (data not shown), the delta HRV-RMSSD was selected
by RF but not by PLS-DA, indicating that “change in HRV-RMSSD” may

Stress (5 min, socio-evaluative task) B ccf-mtDNA responses C ] ®
2000+ Low responders
\ = [ :; [ ] High responders
E J | {
e B g
" ‘{(Ef % + Pl t
4—‘\ . éﬁf; O 1 ccf-mtDNA %1000_ 5’
Q h... ) ® -
2 © =
Qe 1w
£ 5001 %, 2T
/ =] e low e g c 3
i il &
Serum % 04 __...—-dll.ﬂl]m]l]ﬂﬂﬂ 8'3 %%
s |F L
-500-

Component 1 (7.1%)

Fig. 1. Circulating cell-free mitochondrial DNA (ccf-mtDNA) in response to induced psychological stress and operationalization of low and high re-
sponders. (A) Socio-evaluative stress induces a 2-3 fold elevation in serum ccf-mtDNA 30 min after stress. (B) Distribution of the ccf-mtDNA reactivity for all
participants across both sessions (n = 74 total visits). The distribution of ccf-mtDNA response was divided into tertiles to define low, medium, and high responder
groups. (C) A partial least squares discriminant analysis (PLS-DA) model using 56 physio-psychological trait and state variables (available in the study) produces
partial separation of the low and high responders, as shown in the 3D plot of the first three PLS-DA components. Each datapoint is a participant at one of the two

visits.
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A TRAIT =
Stable inter-individual Baseline and
differences reactivity measures
Sex BP
Ethnicity Heart rate
Sleep quality q HRV
Exercise level 56 variables Respiration rate
1I-6
Personality Psychological
Social support
Rumination Affective states
Depression
Anxiety
B . Rel. importance : * y : * : o Rel. importance
Top 15 variables (VIP score) PLS-DA 'Random Forest | Top 15 variables (MDA score)
Sex 1.00 : . * : Baseline DBP 1.00
Baseline DBP 0.97 Baseline SBP 0.58
Baseline LF-HRV 0.89 TOSF1 5 Change in heart rate 0.51
Ethnicity 0.88 - Baseline LF-HRV 0.51
Change in HRV-RMSSD 0.83 Change in HRV-RMSSD 0.49
Baseline HRV-RMSSD 0.78 Sex 0.31
Change in fatigue 0.73 Goldberg's big 5 intellect total score 0.22
Baseline SBP 0.69 Total score of state anxiety 0.19
Change in anxiety 0.69 Baseline HR 0.19
Reward response subscale score for 0.66 .
the Behavioral Inhibition scale i Baseline HRV-RMSSD 0.15
Change in LF-HRV 0.64 Change in fatigue 0.12
Baseline HR 0.62 v Goldberg's big 5 agreeableness total 0.10
score :
Change in respiratory rate 0.61 13% ) .
Behavioral Inhibition System/Scale total 0.08
Change in HF-HRV 0.60 5 score
° Baseline anxiety 0.06
Baseline vigor 059 Total of depressive symptoms 0.05
experienced within the past week .

8 overlapping variables

C HR X2 p-value
l Sex jloemen 2695 | <0.0001
Variables r:g:p‘ﬁ;;: cohen'sd | p-value

Baseline DBP 1 0.73 0.007

Baseline SBP I 0.45 0.065

Baseline HR T 0.41 0.204

Baseline HRV-RMSSD I 0.47 0.145

Change in HRV- RMSSD 1 0.56 0.156

Baseline LF-HRV (! 0157 0.119

Change in fatigue 1 0.38 0.215

Fig. 2. Identifying predictors of ccf-mtDNA response to acute psychological stress using multivariate classification algorithms. (A) 56 total variables a priori
classified as stable trait or variable state were used. Partial least squares discriminant analysis (PLS-DA) and random forest (RF) classification models were trained to
distinguish between low and high ccf-mtDNA responders. (B) Following our pre-established analytic plan, we identified the top 15 variables predicting group
affiliation ranked by variable importance in projection (VIP) score for the first PLS-DA component (left), and mean decrease accuracy (MDA) score from the RF model
(right). (C) Overlapping variables across both classifiers. Metrics for group differences are shown for comparative purposes only (not for statistical inference), using
non-parametric independent samples Mann-Whitney test for the continuous variables. Chi square was performed for the categorical variable (sex). Effect sizes were
calculated as Cohen’s d. Significant (p < 0.05) results are in shown bold, n = 46 visits across low and high reactivity tertiles. Abbreviations: BP: Blood Pressure, DBP:
Diastolic blood pressure, SBP: systolic blood pressure, HF-HRV: High frequency heart rate variability, HR: Heart rate, HRV: Heart rate variability, LF-HRV: low
frequency heart rate variability, RMSSD: root mean square of successive differences, RF: Random Forest.
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Table 1

Psychoneuroendocrinology 107 (2019) 82-92

Inter-correlation between predictors of ccf-mtDNA reactivity identified by PLS-DA and RF classifiers.

Baseline DBP Baseline SBP Baseline heart rate Baseline Change in Baseline LF- HRV Change in fatigue
HRV-RMSSD HRV-RMSSD
Baseline DBP 1.00
Baseline SBP 0.77** 1.00
Baseline heart rate 0.15* 0.06 1.00
Baseline HRV-RMSSD —-0.09 —0.10 —0.53** 1.00
Change in HRV-RMSSD 0.07 0.07 0.22%* —0.48** 1.00
Baseline LF-HRV —0.067 -0.13* —-0.30%* 0.54** —0.45%* 1.00
Change in fatigue —0.01 —0.05 0.03 0.01 0.02 -0.13* 1.00

Values are Spearman’s rho coefficient. Significant results are in bold. * P < 0.05, ** P < 0.01 level (2-tailed). Abbreviations: SBP: systolic blood pressure, DBP:
diastolic blood pressure, HRV: heart rate variability, LF-HRV: low frequency HR, HRV-RMSSD: HRV measured as root mean square of successive differences.

be a less robust predictor of ccf-mtDNA reactivity than baseline mea-
sures of cardiovascular function and change in fatigue. Given that sex
was one of the predictors of ccf-mtDNA reactivity, we assessed if the
selected predictors (n = 7) showed sex differences and found that
baseline DBP was lower in men than in women, but other predictors did
not show sex differences (see Table S1).

3.3. Exploratory analysis of stress induced ccf-mtDNA and changes in affect

Because reduction in fatigue contributed to the discrimination of
high and low responders, we conducted an exploratory analysis on the
stress-induced changes in the valence and activation levels of different
emotions. Using the circumplex model (Russell, 1980), changes in af-
fective states were quantified using both individual POMS items and
summary scores (McNair, 1971; Usala and Hertzog, 1989). Group dif-
ferences in stress-induced changes in affective states between low,
medium, and high responders were then assessed to explore potential
dose-response relationships (Fig. 3). In 75% of cases, the high ccf-
mtDNA responders tended to show greater changes in valence and ac-
tivation of affects than the low responder group. For all summary
scores, the changes in emotions were also greater among high re-
sponders, providing preliminary evidence linking both emotional acti-
vation and valence to ccf-mtDNA reactivity.

3.4. Predictors show dose-response progression from low, medium to high
ccf-mtDNA responders

Next, predictors were plotted in pairs to visualize to what extent
each predictor is able to separate low, medium, and high responders
(Fig. 4B-F). This showed that the averages for individual predictors
among the low, medium, and high responders groups occupied separate
graphical spaces with minimal overlap in the confidence intervals. In all
cases, predictors also exhibited gradual progression (linear or curvi-
linear) across low, medium, and high responders, indicative of a dose-
response association with ccf-mtDNA release. For example, Fig. 4B
shows that the combination of low systolic and diastolic blood pressure
strongly separates high responders from medium and low responders.
The combination of baseline LF-HRV and change in fatigue (Fig. 3F)
also creates a linear continuum that separates groups according to their
ccf-mtDNA reactivity levels, suggesting that specific patterns of psy-
chophysiological function are linked to mtDNA release.

3.5. Predictors account for within-individual divergent ccf-mtDNA
reactivity profiles

Since this study included two independent sessions, we had the
opportunity to examine the within-person stability of serum ccf-mtDNA
responses and their predictors. Of the 32 participants who completed
both sessions, 4 (all males) were divergent responders, having been
classified as low responders (bottom tertile) at one session and high
responders (top tertile) at the other (Fig. 5A). Therefore, we reasoned
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that to the extent that the classification models and group differences
shown in Fig. 4 are robust and generalizable, the information about
each variable should be sufficient to predict ccf-mtDNA release within a
single individual. In other words, if the group-level differences detected
by our algorithms are true predictors of ccf-mtDNA release, they should
“generalize” and predict whether a given individual exposed to socio-
evaluative stress on different occasions will exhibit a small or large ccf-
mtDNA response.

To test this hypothesis, first, we calculated the direction of the
change between low and high responder groups: participants released
more ccf-mtDNA when they had lower baseline DBP, SBP, HRV-RMSSD,
LF-HRV (negative percentage); and they released more ccf-mtDNA
when they had higher baseline HR, lower stress-induced reduction of
HRV-RMSSD, and higher decrease in fatigue (positive percentages). We
then evaluated whether these patterns were conserved among each
divergent responder for each predictor, for a total of 28 observations
(Fig. 4B). Compared to chance level (50% accuracy), in 90% of cases
the within-person change from low to high response sessions matched
the predicted change based on the group findings. In particular, base-
line SBP, HR, RMSSD and LF-HRV predicted the ccf-mtDNA response
100% of the time, suggesting their robustness. Since trait variables are
stable within each person but state variables can change over time,
these results further illustrated that ccf-mtDNA reactivity may depend
more on the temporary states of the individual rather on stable traits.

4. Discussion

Acute psychological stress may affect mitochondria and trigger an
increase in ccf-mtDNA but substantial unexplained inter-individual
differences exist. Here, we sought to identify predictors of ccf-mtDNA
reactivity using machine learning-based multivariate classifiers. Using
these converging methods, which handle high-dimensional datasets and
produce more generalizable findings than traditional inference-based
regression models, we have found that serum ccf-mtDNA reactivity is
associated mostly with acute state measures of psychological and car-
diovascular function.

It is established that physiological and emotional response to psy-
chological stress shows considerable variability both across individuals
and within the same individual tested on different occasions. Numerous
factors are proposed to contribute to this response variability, including
individual physiological and psychological traits and states. The mag-
nitude of cardiovascular, immune and emotional responses to psycho-
logical stress vary by stable trait characteristics such as sex (Kajantie
and Phillips, 2006), ethnicity (Busse et al., 2017), history of trauma
(Carpenter et al., 2007), and other psychological (Chida and Hamer,
2008) and cognitive trait measures (Gaab et al., 2005), as well as be-
havioral factors such physical activity (Gropel et al., 2018; Puterman
et al., 2018) or sleep (Vargas and Lopez-Duran, 2017). To some extent,
the magnitude of stress responses is correlated over time (Cohen et al.,
2000), supporting the existence of underlying dispositional character-
istics accounting for inter-individual differences. In addition to trait
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Fig. 3. Stress-induced changes in affect valence and activation stratified by low, medium, and high ccf-mtDNA responders. Timecourse of affective response
before (pre) and after (post) the stressor for the low, medium, and high ccf-mtDNA responders arranged according to the circumplex model of emotions. The
histograms show the reactivity (delta, post to pre) quantified for each tertile. Affect ratings were obtained using the profile of mood states (POMS) instrument, which
assesses immediate mood states. Shown at the four poles are composite indices for low/high activation, and pleasant/unpleasant emotions. The central box also
includes composite scores. Note the opposite direction of effects along the activation and valence axes. (n = 74 visits).

characteristics, a portion of the variance in stress reactivity is also at-
tributable to the physiological and emotional state of the person at the
time of testing. Manipulation of the individual’s physiological or psy-
chological state prior to stress induction, using aerobic physical activity
(Zschucke et al., 2015) or self-esteem training (Creswell et al., 2005;
Sherman et al., 2009), can substantially attenuate neuroendocrine and
cardiovascular responses to psychological challenge. These results are
in line with our findings demonstrating that both trait and pre-
dominantly state variables account for the magnitude of stress re-
activity.

Interestingly, we found that high ccf-mtDNA responders were ~4
times more likely to be men than women, suggesting a modulation of
ccf-mtDNA reactivity by sex or gender. This is consistent with evidence
of sex difference in stress reactivity, mitochondria biology, or meta-
bolism. Previous work has shown that sex difference in response to
psychological stress exist but the directionality of the findings are
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mixed, with men sometimes exhibiting stronger cortisol and cardio-
vascular reactivity (Chan et al., 2017; Goel et al., 2014; Juster et al.,
2016). There are also sex differences in fundamental aspects of mi-
tochondria biology such as respiratory capacity, reactive oxygen species
production, or sensitivity to permeability transition, generally in the
direction of increased mitochondrial vulnerability in males compared to
females (Ventura-Clapier et al., 2017). Adult men and women also show
significant differences in the circulating levels of mitochondria-related
metabolites related to lipid synthesis and oxidation (Mittelstrass et al.,
2011), and some mitochondrial disorders show sexual dimorphism with
men being more susceptible than women (Rahman et al., 1996; Van
Erven et al., 1987). Although more work is needed to confirm these sex
differences in ccf-mtDNA reactivity, we speculate that greater vulner-
ability of male mitochondria could predispose them to the effects of
acute stressors.

In relation to cardiovascular predictors, the high responder group



C. Trumpff, et al.

Psychoneuroendocrinology 107 (2019) 82-92

A o C o,
EBW High i ® Low responders
i @  Medium responders | .
1204 | a High responders H 681
2 N
'
£ c 1154 ' £ 66
2 @ ‘ 3
o ] s I
a o Lo’ =
1104 .- 64-
-~
Women 105 T T 3 62 T T J
Men 65 70 75 80 65 70 75 80
Baseline DBP Baseline DBP
45 51 -2
. A
! a '
' @ ) .
Q 404 : 2 o A o -3
v
3 - 2
’ > N =
’ .
T 35 v T 5 . £ 4
= 4 c N )]
: 'O — Ly -
3 - 5 S 8
m 30 <5 S -10 - O 5 +—4—
- L | e e e e n .
g . o
25 e ik 18 S
“65 70 75 80 25 30 35 40 45 150 200 250 300 350 400
Baseline DBP Baseline HRV-RMSSD Baseline LF-HRV
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responder groups. (B) Scatterplot of mean

standard error of the mean (SEM) by tertiles of ccf-mtDNA reactivity for baseline SBP and DBP, (C) baseline DBP and

HR, (D) baseline SBP and HRV-RMSSD, (E) baseline and change HRV-RMSSD, and (F) change in LF-HRV and change in fatigue. Dotted arrows show progression from
low to high responders. (n = 74 total visits) Abbreviations: DBP: diastolic blood pressure, SBP: systolic blood pressure, LF-HRV: low frequency heart rate variability,
HR: Heart rate, HRV: Heart rate variability, RMSSD: root mean squared successive differences.

had significantly lower baseline DBP and lower SBP (112/71 mmHg)
than the low responder group (114/76 mmHg), although this difference
is modest. The high responders also had a higher baseline HR and
showed a greater decrease in fatigue after stress, indicating higher task
activation. Regarding HRV, the high responders had lower baseline for
both measures, LF-HRV and vagally-mediated HRV-RMSSD. The higher
responder group also exhibited a reduced change in HRV-RMSSD fol-
lowing stress exposure, which, along with reduced basal HRV, paints a
picture of lower cardio-vascular flexibility associated with ccf-mtDNA
reactivity. At this point, the mechanistic connection between autonomic
regulation and ccf-mtDNA, or mitochondrial function in general, re-
mains unexplored in humans. But both reduced basal HRV and reduced
change in stress-induced HRV have been associated with adverse health
outcomes (Kemp et al., 2017), providing a potential future avenue of
research to understand the cause and the downstream effects of stress-
induced ccf-mtDNA levels.

Except for sex, all predictors identified were “state” variables, de-
monstrating that stress-induced ccf-mtDNA reactivity may vary within
an individual over time. This prompted us to test whether the identified
predictors of inter-individual variability between low to high ccf-
mtDNA reactors were useful to predict divergent responders within-
person. We found that group-based predictions matched individual di-
vergent responses in the vast majority (90%) of the cases. This suggests
that our approach was successful at isolating predictors of inter-in-
dividual variability, and that these generalize, albeit within the same
sample, to within-person differences. Thus, although not definitive, this
provides proof-of-concept evidence that machine learning approaches,
such as multivariate classification algorithms using a heterogenous
combination of psychological, behavioral, and physiological data can
be useful to define features that distinguish experimental or naturally-
occurring groups of individuals that differ in their magntude of stress
reactivity.

Classical inference approaches are well-suited to identify associa-
tions between variables in a given sample but have limited ability to
predict future behavior (Bzdok et al., 2018). While so far mostly used in
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the context of the “omics” fields such as metabolomics and genomics,
and in computational neurosciences (Kragel et al., 2018), machine
learning approaches and predictive analytics have demonstrated their
utility in a variety of fields including human physiology and behavior
(Yarkoni and Westfall, 2017). In general, results in the psychological
and psychosocial sciences have been criticized for generating findings
with particularly low replicability potential. This may be due to a
combination of low effect sizes, overfitting, or the tendency for statis-
tical models to take specific noise within a sample as signal. Machine
learning does not solve these problems but minimizes their impact on
the outcome, thereby increasing generalizability. The present study il-
lustrates how these approaches may contribute to develop predictive
models in psychoneuroendocrinology.

Some limitations of the current study must be considered. Although
machine learning approaches handle a high variable-to-individual ratio
more effectively than traditional inference-based models, the small
sample size of this study remains a limitation. To address this issue we
leveraged converging evidence of two distinct machine learning algo-
rithms, which helped to refine and identify predictors (Gromski et al.,
2015; Menze et al., 2009). Related points of limitation are the low
performance metrics of each model individually most likely due to the
low sample size, our inability to validate our model’s prediction accu-
racy on an entirely independent sample to provide definite estimates of
the predictive accuracy for each predictor. Moreover, among the range
of potential variables included here we identified a substantially greater
number of physiological than psychological measures. This may reflect
true physiological effects whereby baseline cardiovascular physiology is
more closely linked to the mechanism underlying ccf-mtDNA release, as
indicated above. Alternatively, objective cardiovascular indices have
greater measurement precision relative to self-reported affective states,
which have inherently more measurement error. Thus, we cannot rule
out the possibility that the preferential enrichment of physiological
measures among ccf-mtDNA predictors is in part due to selection bias
introduced by measurement error that would particularly diminish the
usefulness or strength of self-reported psychological measures among
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To conclude, we provide a proof-of-concept that machine learning
approaches can be used to explore the determinants of inter-individual
and within-person differences in stress psychophysiology. In the context
of the current study, our findings indicate that acute cardiovascular and
psychological indices, rather than stable individual traits, are potential
predictors of stress-induced serum ccf-mtDNA reactivity. This high-
lights a previously unappreciated degree of dynamic regulation of stress
on mitochondria in humans, is consistent with the idea that the mi-
tochondrial genome is a signalling molecule (i.e. mitokine), and points
to potential links between psychological states, cardiovascular regula-
tion, and ccf-mtDNA. Future investigations of mitochondrial psycho-
biology are needed to resolve the upstream mechanisms leading to ccf-
mtDNA release and to understand the downstream short- and long-term
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health effects.
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