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Mitochondria and  
stress hormone synthesis?



Mitochondria synthesize glucocorticoid and sex hormones
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A
 thin fold of the inner m

em
brane is the com

m
onest configuration of the cristae 

m
itochondriales. A

n alternative form
, found in m

any protozoa and in certain organs of 
m

etazoa, is 
a slender 

villus or 
blind-ending tubule. 

A
m

ong m
am

m
alian tissues 

m
itochondria w

ith tubular cristae are frequently observed in steroid -secreting cells 
such as the Leydig cells of the testis, cells of the corpus luteum

, and cells of the adrenal 
cortex. They are exceptionally w

ell developed in the m
itochondria of the adrenal cortex 

illustrated here. The interior of these long m
itochondria is crow

ded w
ith unbranched 

tubular cristae of uniform
 diam

eter, extending nearly the full w
idth of the organelle. 

Their tubular form
 is evident in several places, indicated by arrow

s, w
here they have 

been cut transversely and present circular profiles. 
This shape of the cristae is evidently specifically related to the biochem

ical 
function of the cells, for in fetal and neonatal life the m

itochondria have the usual 
lam

ellar cristae 
but then develop tubular cristae 

as the cells 
becom

e active 
in 

steroidogenesis. Lam
ellar cristae m

ay persist in lim
ited areas of the m

itochondrion in 
the m

ature gland. O
ne such area is m

arked by an X
 at the low

er edge of the figure. 
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network distribution of mitochondria within the cell cytoplasm and 
perinuclear region92,93, or in specialized appendages such as presyn-
aptic terminals94, also bear direct functional significance, but only in 
the context of the cell.

Mitochondrial features. Features are the intrinsic building blocks of 
mitochondria. They are generally static molecular components, such 
as the abundance of specific proteins, membrane lipids, mtDNA integ-
rity, the density and configuration of cristae membranes, and many 
other quantifiable metrics. Most omics platforms (such as proteomics, 
lipidomics, transcriptomics and genomics) target static features. As 
demonstrated in MitoCarta52, profiling mitochondrial features pro-
vides rich information on the molecular specialization of mitochondria 

(that is, the hardware). However, quantifying mitochondrial features 
does not reflect their functional capacity or behaviours in their cellular 
context. Static measures of mitochondrial morphology and ultras-
tructure, which include quantitative measures of size (volume) and 
morphological features (length, three-dimensional morphological 
complexity, cristae density, and so on86,95) also belong to the category 
of mitochondrial features.

Mitochondrial activities. Activities are single-enzyme activities that 
are measured as dynamic processes, such as the biochemical activity 
of monomeric (for example, CS) or multimeric (for example, pyruvate 
dehydrogenase complex) enzymes. Activities are made of features but 
do not classify as mitochondrial functions. Mitochondrial activities 

a  Morphological and ultrastructural diversity of mitochondria across mammalian tissues and cells

b  Mitochondrial subpopulations in mouse brain hippocampal neurons c  Mitochondrial subpopulations in mouse and human skeletal myofibre
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Fig. 3 | Diversity in mitochondrial morphology. a, TEM micrographs 
of mitochondria in mammalian tissues and cultured cells. The 143B-ρ0 
mitochondrion lacking mtDNA is from ref. 215. Adrenal mitochondrion 
reproduced with permission from ref. 216. Liver, pancreas, brown adipocyte 
and Leydig cell mitochondria reproduced with permission from ref. 73; other 
images are from M.P.’s laboratory). Note the natural variation in morphology 
(gross shape of mitochondria), in ultrastructure (positioning and organization 

of internal cristae membranes) and overall electron density (reflecting density of 
molecular components). b,c, Three-dimensional reconstructions (b) of neural 
mitochondria from the subcellular compartments of large granule neurons 
in the mouse dentate gyrus (adapted from ref. 85), and of skeletal muscle (c) 
mitochondrial phenotypes between the SS and IMF regions of human skeletal 
muscle fibres (adapted from ref. 86). Note the variation in morphological 
complexity and volume within the mitochondrial population of the same cell.
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include the isolated enzymatic activities of OxPhos complexes96 and 
any other enzymatic activities, the isolated activity of individual IMM 
transporters like the ATP/ADP antiporter, proteases, polymerases, 
helicases, metabolite and ion transport across the IMM, to name a few 
examples.

Mitochondrial functions. Functions require at least one step to be 
physically localized within the mitochondrion, and generally involve 
multiple activities contributing to the conversion of an input into an 

output. ATP synthesis, Ca2+ homeostasis, lipid synthesis and many 
other processes are mitochondrial functions enabled by the interac-
tion of two or more (often dozens) molecular features and activities, 
cooperating as an integrated system. For example, the conversion of 
electrons from reducing equivalents into an electrochemical gradient 
(that is, membrane potential, ∆Ψm + ∆pH) is considered a mitochon-
drial function. Similarly, protein import requires the interaction of 
multiple proteins and activities to transport and process proteins from 
the cytoplasm to the mitochondrial matrix. Some functions include 
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Fig. 4 | Terminology for mitochondrial science organized as a hierarchy 
of mitochondrial needs. a, Inspired by Maslow’s pyramid of human needs217, 
depicted is a hierarchy of biological organization from molecules to complex 
organellar behaviours. Lower levels combine to enable higher levels of 
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(middle) are provided as parallel illustrative examples at each level of description 
for mitochondrial biology.



Cellular lifespan model of chronic stress

Natalia Bobba-AlvesGabriel Sturm
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Trajectories of cellular aging ± Dex

Bobba-Alves et al. PNEC 2023
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Chronic Dex treatment causes hypermetabolism

Bobba-Alves et al. PNEC 2023



Bobba-Alves et al. PNEC 2023

Mitochondrial DNA content
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Spare energy transformation capacity



Increased ATP demand 

Increased mtDNA density 

Increased energetic reserve capacity

What is costing excess energy?
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Extracellular secretion
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What are the consequences of 
hypermetabolism?



Reduced lifespan in Dex-treated cells

Bobba-Alves et al. PNEC 2023



Reduced lifespan in Dex-treated cells
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Modest acceleration in telomere shortening rate

Bobba-Alves et al. PNEC 2023



Chronic Dex accelerates epigenetic aging

Bobba-Alves et al. PNEC 2023



Correlation of cell death and hypermetabolism

Bobba-Alves et al. PNEC 2023
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Correlation of cell death and hypermetabolism
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CenturiesYears / DecadesSeconds

HYPERMETABOLISM

Hypermetabolism is an increase in the amount of  
energy needed to sustain one’s life over time

Rate of living hypothesis?
Why is hypermetabolism associated with aging?
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Are brain cortical mitochondrial phenotypes linked to 
stress, and psychosocial exposures/experiences?



Rosenberg et al. Nat Commun 2023
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Figure 1. Enzymatic activities by mouse brain region. (A) Experimental design. (B) 17 brain regions of interest, labeled by name and distance from bregma, with red circles 
indicating bilateral punch locations.  Images acquired from the Allan Mouse Brain Atlas (Dong, H. W. The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse. 
John Wiley & Sons Inc. (2008). Abbreviations expanded in Table 1. 
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Figure 4. Mitochondrial function-based “connectivity” across anatomical brain regions. (A) Correlation matrix of mitochondrial functioning across brain regions, using all 6 
mitochondrial measures, and all animals (n=27). The matrix is ordered by hierarchical clustering (Euclidian distance, Ward’s clustering). (B) Global connectivity based on the 
average correlation for each brain region with all other regions. (C) (D) (E)

Similarity in mito features based 
on regional activities

My understanding was that the PCA was a first way in which Manish tried to cluster brain regions. Then he went the 
other way using multi-sclice? If so, we could present the results from the multi-slice, and say using PCA achieved 
similar results and say that PCA resulted in similar conclusions (and have a supplemental figure if Manish wants).


Or maybe I got this wrong…
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Nice

P values?

Chance level?

Chance level?

What are the boxes on the right and side panel of B? Could you use violin plots with each datapoint a 6x6 square?

Alternate presentation for previous figure?

Are we keeping this for two figures?


One figure I think would be best since it’s addressing a similar question - let’s see what Manish thinks
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Multiple linear regression adjusted for sex and cognitive status; cell type abundances
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Psychobiological associations in human brain mitochondria
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Psychobiological associations in human brain mitochondria
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