

6th Annual MITOCHONDRIA SYMPOSIUM

Columbia University

martin.picard@Columbia.edu

Mouse and human brain mitochondrial diversity

- Mitochondriac
- Obsessed with Energy in all forms
- Driven daily by an electric Model Y

@MitoPsychoBio

Mitochondrial science beyond function and dysfunction: A discussion

UCLA Mito Symposium 2023

Martin Picard, Ph.D. Department of Psychiatry, Division of Behavioral Medicine Department of Neurology, H. Houston Merritt Center Columbia Translational Neuroscience Initiative New York State Psychiatric Institute (NYSPI) COLUMBIA

COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Anna Monzel (in preparation)

Monzel et al. Nat Metab 2023

É,

a Domains of human health

- Development and growth
- Physical activity
- Wound healing
- Immunity
- Cardiovascular fitness
- Locomotion
- Digestion
- Sleep
- Cognition
- Learning and memory
- Social interactions
- Others...

Organ systems

Cell types

Mitochondrial function?

Mito-types?

We need better nomenclature

Empirically-grounded

Simple and intuitive

How do we capture everything that mitochondria do?

Martin Picard 🤣 @MitoPsychoBio

Question for mitochondriacs: Can we come up with a list of all <u>mitochondrial functions? Beyond OxPhos and ATP synthesis</u>, what are core mitochondrial *functions*?

...

Please add a reference for functions you mention below.

III View post engagements

Mitochondrie dysfunction

Table 2 | Infusing specificity into our mitochondrial terminology can enhance how we design and communicate research

Non-specific notation	Limitation or problem	Specific notation
In a talk or conversation: A) 'We measured mitochondrial dysfunction []'		

Monzel, Enriquez, Picard. Nat Metab 2023

nature metabolism

Perspective

https://doi.org/10.1038/s42255-023-00783-1

Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction

Compendium of mitochondrial functions and behaviors

D

0

Table 2 | Infusing specificity into our mitochondrial terminology can enhance how we design and communicate research

Non-specific notation	Limitation or problem	Specific notation
In a talk or conversation: A) 'We measured mitochondrial dysfunction []'	There are dozens of functions, and therefore dozens of ways to exhibit dysfunction.	A') General: 'We measured mitochondrial phenotypes []' Specific: 'We measured skeletal muscle mitochondrial OxPhos enzyme activities and citrate production []'

Monzel, Enriquez, Picard. Nat Metab 2023

The "powerhouse" analogy is expired

It negatively skews our thinking

What is a better analogy?

Tim Shutt: Mitochondria as the CEO of the cell? "Chief Executive Organelle"

Context matters

The ultimate unit of evolution is the organism (not the cell)

Mitochondrial Information Processing System (MIPS)

Picard and Shirihai. *Cell Metab* 2022

The hallmarks of mitochondrial signal transduction

Thanks to Anu Suomalainen Picard and Shirihai. *Cell Metab* 2022

"Mitochondria are the processor of the cell"

Mitochondrial Information Processing System — MIPS

Dynamic remodeling of mito networks

Picard and Shirihai. Cell Metab 2022

Mitochondrial PsychoBiology Lab

OUR RESEARCH

necular processes within mitochondria with the human experience

Precious collaborators

Mitochondrial Biology & Medicine

Michio Hirano Catarina Quinzii CUIMC Neurology

Brett Kaufman Pittsburgh University

Gyuri Hajnóczy Erin Seifert Thomas Jefferson University

Orian Shirihai Mike Irwin UCLA

Tonio Enriquez CNIC Madrid

Vamsi Mootha Rohit Sharma Harvard & MGH

Ryan Mills University of Michigan

Gilles Gouspillou

Jon Brestoff Wash U

MiSBIE & MDEE Teams

Kris Engelstad Catherine Kelly Shufang Li Anna Monzel Janell Smith

Psychosocial Sciences

Robert-Paul Juster Université de Montréal

Elissa Epel Jue Lin Aric Prather Ashley Mason UCSF

Eli Puterman

Clemens Kirshbaum Dresden University

Anna Marsland Rebecca Reed Pittsburgh University

Suzanne Segerstrom University of Kentucky

David Almeida Penn State University

Energy expenditure & metabolism

Marie-Pierre St-Onge Dympna Gallagher Michael Rosenbaum CUIMC Medicine

Chris Kempes Santa Fe Institute

Herman Pontzer Duke

Sam Urlacher Baylor

Brain Neurobiology & Neuroimaging

Phil De Jager Hans Klein Vilas Melon Stephanie Assuras CUIMC Neurology

Eugene Mosharov Dave Sulzer John Mann Maura Boldrini Mark Underwood Gorazd Rosoklija Andrew Dwork Chris Anacker Dani Dumitriu Catherine Monk Vincenzo Lauriola Richard Sloan Caroline Trumpff CUIMC Psychiatry

Tor Wager Dartmouth

Michel Thiebaut de Schotten CNRS Bordeaux

Manish Saggar Stanford

Anne Grunewald University of Luxembourg

Carmen Sandi

Biological Aging

Steve Horvath Morgan Levine Altos

Albert Higgins-Chen Yale

Marie-Abèle Bind Harvard

Luigi Ferrucci NIA Intramural

Dan Belsky Linda Fried CUIMC Mailman & Aging Center

BASZUCKI

The Nathaniel whatton Fund

National Institute of Mental Health

National Institute of General Medical Sciences

National Institute on Aging

Mitochondria are the **processor** of the cells

Downloadable slides

Calcium

Sub-cellular localization

Perinuclear clustering & signaling

MIPS-derived intracellular and systemic signals

Innate immune scaffolding

Sub-cellular localization

MIPS-derived intracellular and systemic signals

	Analogous lev		
	Organism	Cell types and subtypes	Ditochondrial phenotypes
Features	Body characteristics Height, body mass index, hydration level, muscle mass, biological sex	Molecular components that define cell types and subtypes Cell surface receptors, gene expression patterns, DNAm epigenetic marks	Static, molecular characteristics that define mitochondrial phenotypes RNA, proteins, OxPhos subunits, mtDNA integrity, morphology, lipid composition
Activities	Organ-level processes Skeletal muscle contraction, insulin secretion, cardiac output, peristalsis	Sub-cellular processes Transcription, translation, autophagy, receptor-mediated signal transduction	Processes of individual molecular components ETC enzyme kinetics, other enzymes, Fe buffering, DNA repair
Functions	Physiological processes Glycemic control, blood pressure, digestion, wound healing, circadian rhythms, sleep	Integrated cellular processes Specific cytokines release, phagocytotic activity, cell migration, contraction	Integrated processes of mitochondria requiring multiple individual activities OxPhos, Fe/S cluster synthesis, ROS production, steroidogenesis, anaplerosis
Behaviours	Goal-directed complex set of functions Social behaviours, reproduction, thinking and feeling, walking and running, ageing	Goal-directed processes involving the cell as a whole Differentiation, extravasation, developmental apoptosis	Goal-directed complex processes involving the mitochondrion as a whole Fusion, fission, motility, inter-organellar signalling
Context-dependent phenotypes	Physiological states driven by social and environmental demands Homeostasis, allostasis and allostatic load	Cellular characteristics relevant only at the organ level Hyperplasia, inflammation, elasticity	Mitochondrial characteristics relevant in the context of the host cell Mitochondrial content, mtDNAcn, cellular O_2 consumption

Monzel, Enriques, Picard. Nat Metab 2023

Mitochondria are diverse, multifunctional organelles

Monzel, Enriques, Picard. Nat Metab 2023

	Description	Reviewed in ref(s).	Methods described in ref(s).
Functions			
^a Membrane potential generation	Formation of the electrochemical gradient ($\Delta\Psi$ m+ Δ pH) across the IMM, usually by the electron pumping capacity of the respiratory complexes I, III and IV, but also by other processes including through ATP hydrolysis by the F _o F ₁ ATP synthase (complex V).	104	105,106
Amino acid metabolism	Lysine metabolism (lysine-a-ketoglutarate reductase, encoded by AASS). Electrogenic malate-aspartate shuttle system, which is important for balancing pyridine dinucleotide redox states across subcellular compartments. Branched-chain keto and amino acids. Choline and derivatives as structural precursors for lipoproteins, membrane lipids and the neurotransmitter acetylcholine. Betaine as osmoregulator and an intermediate in the cytosolic transulfuration pathway.	107–111	112–119
Ascorbate metabolism	L-ascorbate (vitamin C) biosynthesis in many plants and animals, but not in primates, which serves as osmoregulator and antioxidant. Mitochondria may recycle oxidized (dehydro)ascorbic acid.	120	121,122
Bicarbonate metabolism	Production of bicarbonate (HCO_3^{-}) by mitochondrial carbonic anhydrase V (encoded by CA5A), used as a cofactor for anaplerotic reactions (for example, ureagenesis and gluconeogenesis) and acid-base balance. The TCA cycle is an important contributor to cellular/extracellular acidification due to CO_2 production.	123	_
Calcium uptake and extrusion	Uptake of cytoplasmic Ca ²⁺ via the mitochondrial calcium uniporter in a $\Delta\Psi$ m-dependent manner; extrusion by the sodium/calcium exchanger NCLX (encoded by <i>SLC8B1</i>).	124–126	127,128
Hydrogen sulfide detoxification	Mitochondrial sulfide quinone oxidoreductase (encoded by SQOR) oxidizes hydrogen sulfide to glutathione persulfide by reducing CoQ.	129–132	133
Heat production	Heat generation is stimulated by uncoupling $\Delta\Psi$ m+ Δ pH from ATP synthesis (thereby increasing electron flux and respiration) by UCP1 (encoded by UCP1), the ADP/ATP carrier (AAC, also ANT1), or by creatine-dependent substrate cycling and other futile cycles.	134-137	138
Intermediate metabolism	Enzymatic interconversion of metabolic intermediates to enable the synthesis of specific macromolecules, including five major anaplerotic ones. This includes the conversion of pyruvate into oxaloacetate by pyruvate carboxylase (encoded by <i>PC</i>), a critical step for de novo glucose synthesis (gluconeogenesis); citrate export to the cytoplasm where it is used for lipid synthesis or converted to acetyl-CoA for acetylation reactions; synthesis of itaconate, a derivative of <i>cis</i> -aconitate; succinate, a-ketoglutarate and others that participate in a variety of signalling	25,139,140	141,142

Table 1 | Mitochondrial functions and behaviours

Lipid oxidation	Beta-oxidation of long-chain, medium-chain and short-chain fatty acids into acetyl-CoA.	145	146
Lipid synthesis	Synthesis of cardiolipin and phosphatidylethanolamine from ER precursors in the IMM.	147–150	-
mtDNA maintenance and expression	mtDNA replication, transcription, protein synthesis and assembly of the OxPhos system.	151,152	153,154
Na⁺import/export	Sodium (Na ⁺) uptake and release against cytoplasmic Ca ²⁺ by the sodium/calcium exchanger protein NCLX (encoded by SLC8B1) or by Na ⁺ /H ⁺ antiporter (molecular identity pending).	124,155	156
Neurotransmitter synthesis and degradation	Synthesis of the cofactor BH4 (tetrahydrobiopterin), used by hydrolase enzymes to synthesize catecholamines and neurotransmitters (serotonin, melatonin, norepinephrine and epinephrine) and nitric oxide. Mitochondria with OMM-anchored monoamine oxidases (encoded by <i>MAOA</i> and <i>MAOB</i> , donate electrons and contribute to electron flow in the ETC) also degrade catecholamines. Mitochondria also participate in GABA metabolism.	9,157	158,159
One-carbon metabolism and pyrimidine synthesis	The one-carbon metabolism connects the synthesis of nucleotides (purine and pyrimidine), amino acids (methionine, serine and glycine), S-adenosyl-methionine and folate. Ubiquinone-mediated oxidation of dihydroorotate to orotate by dihydroorotate dehydrogenase (encoded by DHODH) is a key step in pyrimidine synthesis.	160–163	164
OxPhos	Transduction of $\Delta\Psi$ m+ Δ pH generated by the electron transport chain (ETC, also 'respiratory chain') into ATP synthesis by the F _o F ₁ ATP synthase (complex V), abbreviated as OxPhos.	165	166
Oxygen sensing	The electron transport and free-radical generation by ETC complexes I and III is modulated by the partial pressure of oxygen, which can limit respiration at very low partial pressures of O_2 .	167–170	-
Permeability transition	Opening of the high-conductance permeability transition pore (PTP), which dissipates membrane potential and promotes the release of intracristae and matrix-located components into the cytoplasm.	171,172	173-175
Protein import	Import, processing and folding of nuclear-encoded polypeptides from the cytoplasm by the translocator of the inner membrane (TIM) and outer membrane (TOM) complexes and associated proteins.	176	-
Redox homeostasis	Re-oxidation of enzymes and/or their redox cofactors (involved in anabolic and catabolic reactions) by the electron acceptors CoQ and cytochrome c (encoded by CYTC) within the mitochondrial respiratory chain, and production of NADPH by <i>NNT</i> .	177,178	-
Respiration	Electrons stored in reducing equivalents NADH and FADH ₂ , or derived from diverse redox reactions are sequentially delivered to respiratory complex I and CoQ, or cytochrome c, respectively, to promote the reduction of molecular oxygen at cytochrome c oxidase (complex IV).	179,180	181
ROS production	Production and release of ROS (H_2O_2 , O_2^{\cdot} , others) mainly at respiratory chain complexes I and III.	182,183	184
Steroidogenesis	Production of pregnanolone from cholesterol imported via IMM steroidogenic	33,34,185,186	187

UVICULIULIE U UNICASE I	COLL	1.

ROS production	Production and release of ROS (H_2O_2 , O_2^{\cdot} , others) mainly at respiratory chain complexes I and III.	182,183	184
Steroidogenesis	Production of pregnanolone from cholesterol imported via IMM steroidogenic acute regulatory protein (encoded by <i>STAR</i>) followed by enzymatic transformation by P450ssc (encoded by <i>CYP11A1</i>) in the matrix. Intermediate or terminal steps for some steroids occur in the ER. Cytochrome P450 family members participate also in xenobiotic metabolism as well as bile acid and vitamin D biosynthesis.	33,34,185,186	187
Behaviours			
Antiviral signalling	Assembly of the mitochondrial antiviral signal (encoded by MAVS) adaptor protein on the OMM to potentiate downstream signalling, and activation of nuclear interferon pathways in the nucleus by mtDNA release.	39,188	-
Apoptotic signalling	Release of cytochrome c (encoded by CYCS), apoptosis-inducing factor (encoded by <i>AIF</i>), and other proteins that trigger different forms of cell death by acting on cytoplasmic and nuclear effectors.	189,190	-
Cristae remodelling	Dynamic remodelling of IMM cristae junctions, cristae shape and distribution via the combined action of optic atrophy 1 (encoded by <i>OPA1</i>) and mitochondrial contact site and cristae organizing system (MICOS) proteins.	103,191	95
DNA signalling	mtDNA extrusion in the cytoplasm, particularly in the form of oxidized mtDNA fragments via proteinaceous pores forming across the IMM and OMM, which trigger inflammasome activation.	189,190,192,193	175
Epigenetic remodelling	Transduction of mitochondrial states into changes in epigenome via several functions including metabolic intermediates, DNA release, ROS production and others.	30,194	-
Inter-organelle communication	Exchange of information between mitochondria and other organelles, particular the ER, where mitofusin 2 (encoded by <i>MFN2</i>) plays a key role in tethering organelles.	195,196	197,198
Mitochondrial dynamics	Mitochondrial fusion and fission through OMM-anchored and IMM-anchored GTPase proteins capable of merging or constricting mitochondrial membranes to enact fragmentation of larger organelles into smaller ones.	191,199–201	202
Mito-mito communication	Exchange of information between mitochondria by soluble signals (for example, ROS-induced ROS release, RIRR), by complete membrane fusion, or by physical extensions of thin protein-carrying OMM and IMM membrane protrusions (that is, nanotunnels) and trans-mitochondrial cristae alignment between energized mitochondria.	203–206	207–209
Motility	Movement of energized mitochondria across the cytoplasm via the combined action of motor and adaptor proteins interacting with cytoskeletal elements.	6,210	211
Vesicle formation	Release of MDVs destined to different cellular fates by the action of motor and accessory proteins acting on the OMM and IMM.	212	213,214

^aGeneration of mitochondrial membrane potential is the 'mother' of many other functions and behaviours, providing the driving force for the movement of ions, solutes and proteins across the IMM, the driving force for key enzymes and processes, including the phosphorylation of ADP into ATP (OxPhos). Mitochondrial features (that is, molecular components) and activities (individual enzyme and non-enzymatic activities) are too numerous to be comprehensively listed, so only functions and behaviours are included. CoQ, coenzyme Q.

MitoBrainMap v1.0

A multi-function mitochondrial atlas of a single human coronal brain section at fMRI resolution

Closing the gap between organellar bioenergetic profiling and whole-brain neuroimaging modalities (fMRI, CBV, DWI, etc)

Eugene Mosharov

Life is a regulated **energetic cascade** sustained by information transfer across interconnected biological systems

ENERGY

- 20-25% OF WHOLE BODY EE
- HIGHEST ENERGY CONSUMPTION
- CONSTANT ENERGY FLUX

CONNECTIONS

- MOST DENSELY CONNECTED ORGAN
- LONG-RANGE CONNECTIONS
- **PLASTICITY**

Thiebaut de Schotten and Forkel. Science 2022

How much of inter-individual differences in **behaviors** are driven by **mitochondria**?

Miniaturization & optimized throughput

Computational integration

Intuition on multi-tissue phenotypes

H₀: Strong correlation between tissues, with some animals higher in all tissues, some lower in all

H₁: If **poor/no correlation**, this would indicate that there is no individual-level factor

Jack Devine

Similarity matrix based on mitochondrial activities

Are there brain networks with shared mitochondrial phenotypes?

Manish Saggar

Manish Saggar

Anna Monzel

Jack Devine

Anna Monzel

Data from Allen Mouse Brain Atlas Mitopathways from MitoCarta 3.0

Brain Networks

mOFC

Bivariate mitotype: G3P shuttle vs Vit.B2 metabolism

Jack Devine

Anna Monzel

Network-based mito-behavior correlations

Brain mitochondria account for **up to ~20-45%** of the <u>explainable</u> variance in behaviors between animals

Are brain mitochondrial phenotypes linked to psychosocial exposures & experiences in humans?

Multiple linear regression adjusted for sex and cognitive status