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network distribution of mitochondria within the cell cytoplasm and 
perinuclear region92,93, or in specialized appendages such as presyn-
aptic terminals94, also bear direct functional significance, but only in 
the context of the cell.

Mitochondrial features. Features are the intrinsic building blocks of 
mitochondria. They are generally static molecular components, such 
as the abundance of specific proteins, membrane lipids, mtDNA integ-
rity, the density and configuration of cristae membranes, and many 
other quantifiable metrics. Most omics platforms (such as proteomics, 
lipidomics, transcriptomics and genomics) target static features. As 
demonstrated in MitoCarta52, profiling mitochondrial features pro-
vides rich information on the molecular specialization of mitochondria 

(that is, the hardware). However, quantifying mitochondrial features 
does not reflect their functional capacity or behaviours in their cellular 
context. Static measures of mitochondrial morphology and ultras-
tructure, which include quantitative measures of size (volume) and 
morphological features (length, three-dimensional morphological 
complexity, cristae density, and so on86,95) also belong to the category 
of mitochondrial features.

Mitochondrial activities. Activities are single-enzyme activities that 
are measured as dynamic processes, such as the biochemical activity 
of monomeric (for example, CS) or multimeric (for example, pyruvate 
dehydrogenase complex) enzymes. Activities are made of features but 
do not classify as mitochondrial functions. Mitochondrial activities 
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Fig. 3 | Diversity in mitochondrial morphology. a, TEM micrographs 
of mitochondria in mammalian tissues and cultured cells. The 143B-ρ0 
mitochondrion lacking mtDNA is from ref. 215. Adrenal mitochondrion 
reproduced with permission from ref. 216. Liver, pancreas, brown adipocyte 
and Leydig cell mitochondria reproduced with permission from ref. 73; other 
images are from M.P.’s laboratory). Note the natural variation in morphology 
(gross shape of mitochondria), in ultrastructure (positioning and organization 

of internal cristae membranes) and overall electron density (reflecting density of 
molecular components). b,c, Three-dimensional reconstructions (b) of neural 
mitochondria from the subcellular compartments of large granule neurons 
in the mouse dentate gyrus (adapted from ref. 85), and of skeletal muscle (c) 
mitochondrial phenotypes between the SS and IMF regions of human skeletal 
muscle fibres (adapted from ref. 86). Note the variation in morphological 
complexity and volume within the mitochondrial population of the same cell.
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include the isolated enzymatic activities of OxPhos complexes96 and 
any other enzymatic activities, the isolated activity of individual IMM 
transporters like the ATP/ADP antiporter, proteases, polymerases, 
helicases, metabolite and ion transport across the IMM, to name a few 
examples.

Mitochondrial functions. Functions require at least one step to be 
physically localized within the mitochondrion, and generally involve 
multiple activities contributing to the conversion of an input into an 

output. ATP synthesis, Ca2+ homeostasis, lipid synthesis and many 
other processes are mitochondrial functions enabled by the interac-
tion of two or more (often dozens) molecular features and activities, 
cooperating as an integrated system. For example, the conversion of 
electrons from reducing equivalents into an electrochemical gradient 
(that is, membrane potential, ∆Ψm + ∆pH) is considered a mitochon-
drial function. Similarly, protein import requires the interaction of 
multiple proteins and activities to transport and process proteins from 
the cytoplasm to the mitochondrial matrix. Some functions include 
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Fig. 4 | Terminology for mitochondrial science organized as a hierarchy 
of mitochondrial needs. a, Inspired by Maslow’s pyramid of human needs217, 
depicted is a hierarchy of biological organization from molecules to complex 
organellar behaviours. Lower levels combine to enable higher levels of 
organization. Each level can be studied using specific types of laboratory 
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to examine and perturb mitochondrial biology. Biomedical terminology related 
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complex operations that involve the collaboration of mitochondria 
with other organelles. A function that illustrates this cooperativity 
is steroidogenesis within adrenal and gonadal mitochondria. Steroi-
dogenesis requires the import of cholesterol from the cytoplasm to 
the matrix via the outer mitochondrial membrane (OMM) protein 
STAR, a redox-dependent side-chain cleavage reaction by the matrix 
P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
chemical steps uniquely positioned in mitochondria. Both steroidogen-
esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 
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Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.
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from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.
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adaptation through inter-organelle and cell–cell communication2. For a list of 
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Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.
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A catalogue of mitochondrial *functions*
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Figure 1. Enzymatic activities by mouse brain region. (A) Experimental design. (B) 17 brain regions of interest, labeled by name and distance from bregma, with red circles 
indicating bilateral punch locations.  Images acquired from the Allan Mouse Brain Atlas (Dong, H. W. The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse. 
John Wiley & Sons Inc. (2008). Abbreviations expanded in Table 1. 
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Figure 4. Mitochondrial function-based “connectivity” across anatomical brain regions. (A) Correlation matrix of mitochondrial functioning across brain regions, using all 6 
mitochondrial measures, and all animals (n=27). The matrix is ordered by hierarchical clustering (Euclidian distance, Ward’s clustering). (B) Global connectivity based on the 
average correlation for each brain region with all other regions. (C) (D) (E)

Similarity in mito features based 
on regional activities

My understanding was that the PCA was a first way in which Manish tried to cluster brain regions. Then he went the 
other way using multi-sclice? If so, we could present the results from the multi-slice, and say using PCA achieved 
similar results and say that PCA resulted in similar conclusions (and have a supplemental figure if Manish wants).


Or maybe I got this wrong…
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One figure I think would be best since it’s addressing a similar question - let’s see what Manish thinks



Life costs energy



How much energy does it cost to stay alive?



1. Where does the energy come from?



1. Where does the energy come from?

2. What do we spend energy on?
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Human energy expenditure 

Energy savings 
during sleep

(∼20-30%)

Shechter et al. Am J Clin Nutr 2013

The purpose of sleep may be to allow hypometabolism
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Partitioning of energetic resources in humans
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Homeostasis: corrective actions to 
normalize physiological parameters

Allostasis: anticipatory actions mobilized 
to prevent deviations in physiological 
parameters, or optimize adaptation

• Secretion of gastric juices and digestive 
enzymes at the sight/smell of food

• Cortisol and catecholamine secretion from 
perceived (mental) stress

Allostasis costs energy
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…

How much energy do we spend to stay alive?

Pontzer et al. Science 2021



ENERGY EXPENDITURE and OxPhos defects
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How does cellular energy expenditure /
consumption change with OxPhos defects?
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Healthy control 
n=3 donors

SURF1 
n=3 donors

+ Oligomycin 
(1nM)

O2 H2O

Complex IV

Complex V

ATPADP

Gabriel Sturm Sturm et al. Commun Biol 2023



OxPhos defects reduce cell division rate by 32-48%

Slower division = less protein synthesis, less DNA replication, less 
telomerase activity, less mitochondrial biogenesis, … ENERGY SAVINGS?
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Hypermetabolism is not driven by OxPhos uncoupling

Sturm et al. Commun Biol (2023)
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OxPhos defects increase cytokine release

Maximum cytokine 
levels across the 

lifespan

HYPERmetabolism



OxPhos defects upregulate the translation machinery

Sturm et al. Commun Biol (2023) 

Buttgereit et al. Biochem J 1995

HYPERmetabolism



OxPhos defects cause a time-dependent activation of the  
integrated stress response (ISR)
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OxPhos defects accelerate telomere shortening rate
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OxPhos defects accelerate epigenetic aging  
DNA methylation clocks

Steve Horvath, Morgan Levine.  
Albert Higgins-Chen


Gabriel Sturm

HYPERmetabolism



Hypermetabolic cells have a  
reduced Hayflick limit

Gabriel Sturm
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https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/ 

https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/


Bobba-Alves et al. PNEC 2023

Stress signaling

Glucocorticoid 
   hormone

Maladaptive outcomes
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ALLOSTATIC OVERLOAD
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↑ Energy expenditure
HYPERMETABOLISM
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Glucocorticoid signaling increases energy expenditure by 60% 



HIGHER metabolic rate

+25%

LOWER physical activity

-60%

T cell-specific 

Tfam KO

T cell-specific TFAM deficiency causes HYPERMETABOLISM

Desdin-Mico et al. Science 2020
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Energetic Model of Allostatic Load (EMAL)



Physiological mechanisms of hypermetabolism?

Sercel et al. (BioRxiv)



Potential sources of hypermetabolism

System-level & physiological

Tissue-level, circulating

Cell-autonomous

• Circulating metabokines
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Is ATP deficiency the cause of disease in 
OxPhos defects?



Central dogma model of 
mitochondrial diseases
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in vivo?
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Mito-nuclear 
signaling

Premature death

Interventions 

Clinical management

Sercel et al. (under review)



Energy constraint model 
(Hypermetabolism)
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New therapies?
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Energy tradeoffs

Mito Signal Transduction Mito Diversity & Behavior

Nature Metabolism

Perspective https://doi.org/10.1038/s42255-023-00783-1

complex operations that involve the collaboration of mitochondria 
with other organelles. A function that illustrates this cooperativity 
is steroidogenesis within adrenal and gonadal mitochondria. Steroi-
dogenesis requires the import of cholesterol from the cytoplasm to 
the matrix via the outer mitochondrial membrane (OMM) protein 
STAR, a redox-dependent side-chain cleavage reaction by the matrix 
P450ssc enzyme, and in the case of cortisol, several steps in the endo-
plasmic reticulum (ER) followed by the final enzymatic step by the 

matrix enzyme 11-beta-hydroxylase34,97. Collectively, these features and 
activities produce the diffusible endocrine hormone cortisol, making 
cortisol synthesis a mitochondrial function.

Fe/S cluster synthesis also involves several enzymatic and bio-
chemical steps uniquely positioned in mitochondria. Both steroidogen-
esis and Fe/S cluster synthesis are mitochondrial functions essential to 
animal life; the former is specific to a few specialized mitochondria in 
the adrenal glands and gonads, while the latter is essential to the life of 

OxPhos and
ATP synthesis
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Fig. 5 | Example of measurements across domains of mitochondrial biology. 
Cell-dependent phenotypes: Frequently used mitochondrial measures such as 
mitochondrial content (also known as mitochondrial mass), mtDNAcn per cell, 
and OCR by cells or tissues do not reflect intrinsic mitochondrial properties. 
Rather, they provide information about cellular energy demand and/or cell-level 
regulatory processes controlling mitochondrial biology. Features: Features are 
molecular components that can vary in quantity or quality, generally measurable 
from frozen or dead cellular material. Activities: Activities emerge from the 
interaction of multiple features, resulting in specific enzymatic activities or 
intrinsic properties of mitochondria that change the effective concentration 
of one or more substrates. Functions: Functions emerge from the combination 
of several activities, resulting in the transformation of inputs into outputs 

at the organelle level. Example of activities include energy transformation 
through the OxPhos system, Ca2+ regulation, macromolecule biosynthesis and 
the production of signals or outputs. Behaviours: Behaviours emerge from the 
interaction of multiple functions in collaboration with cytoplasmic and inter-
organellar factors. As in cells and organisms, behaviours are best understood as 
goal driven, meaning that they reflect the coming together of several functions 
towards an end goal, such as modulating the architecture of the mitochondrial 
network through dynamics and motility, altering nuclear gene expression 
through repositioning and signalling, or optimizing cellular and organismal 
adaptation through inter-organelle and cell–cell communication2. For a list of 
mitochondrial functions and behaviours, see Table 1. SNP, single-nucleotide 
polymorphism. MCU, mitochondrial calcium uniporter.
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OUTSTANDING QUESTIONS

1. Are mito disease patients consistently hypermetabolic?  

2. What costs more energy in OxPhos-deficient cells? 

3. What costs more energy in OxPhos-deficient bodies & brains? 

4. Does this play a causal role in accelerating decline and organ failure? 

5. Does this contribute to immune alterations in mitochondrial diseases? 

6. Can this explain clinical symptoms and observations?

ENERGY CONSUMPTION



• Many mitochondrial diseases present and are more severe in childhood (Pearson syndrome) Basal 
EE is highest in childhood, added costs to OxPhos defect-induced hypermetabolism


• Patients experience fatigue, sleep more, and nap frequently  
Sleep decreases basal EE (hypometabolism), countermeasure to hypermetabolism?


• In some patients alcohol triggers fatigue and decompensation (alcohol intolerance) 
Alcohol consumption increases basal EE (+16%), exacerbating hypermetabolism


• Infectious conditions can trigger clinical exacerbations, symptoms onset, death 
Immune activation costs energy(!), increasing basal EE, exacerbating hypermetabolism


• The brain is particularly vulnerable to OxPhos defects, leading to neurological symptoms 
Brain resting EE is one of the highest (20-24% of whole body EE), tradeoff with other organs


• Psychological stress may trigger or exaggerate some symptoms of mitochondrial diseases 
Activation of stress response costs energy, increases EE by 9-67%, exacerbating hypermetabolism

Potential clinical implications for mitochondrial diseases 
Hypermetabolism could explain why …



OxPhos defects cause hypermetabolism in mouse models?

OxPhos deficient mice are less active, yet expend  
the same or more energy per hour to sustain life

Sercel et al. (BioRxiv)



OxPhos defects shorten lifespan by ~3-4 decades in adults

Bobby McFarland (Newcastle) 
Sturm et al. Commun Biol 2023



Energy flow ➡ entropy production ➡ decay and finite lifespan

CenturiesYears / DecadesSeconds

HYPERMETABOLISM

Imperfection



Energy efficiency is highly evolutionary favorable 
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Energy efficiency is highly evolutionary favorable 

ENERGY

High fertility
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ENERGY
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Brain function and cognition

Immune regulation
Neural activity

Stress responses

Cell proliferation Development and aging

PHYSIOLOGY, COGNITION, PSYCHOBIOLOGICAL 
PROCESSES & ALLOSTASISPicard. Biochemistry 2022
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Partitioning of energetic resources in humans
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LOAD
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OVERLOAD

++++++ ++++

Reduced GMR 
↓ stem cell maintenance

↓ functions and efficiency

↑ accumulation of damage

ALLOSTATIC LOAD 
⬇ 
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=

Homeostasis: corrective actions to 
normalize physiological parameters

Allostasis: anticipatory actions mobilized 
to prevent deviations in physiological 
parameters, or optimize adaptation

• Secretion of gastric juices and digestive 
enzymes at the sight/smell of food

• Cortisol and catecholamine secretion from 
perceived (mental) stress

Allostasis costs energy
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Partitioning of energetic resources in humans

Arising questions for mitochondrial diseases: 

- Failure to thrive caused by physiological energy tradeoffs? 

- Is hyperglycemia a physiological strategy to avoid energy tradeoffs? 

- Do infections trigger decompensation because they force tradeoffs among systems? 

- Is hypothyroidism a strategy to avoid hypermetabolism and energy tradeoffs? 

- Others
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Normal partitioning of 
energetic costs

Awake

Vital functions

(during sleep)

Life-sustaining processes:

1. Cognitive processes  

(Sensory functions, appraising, planning, emotion regulation, rumination, etc)

2. Physiological (organ-level) processes  

(Thermoregulation, digestion, muscle contraction, immune regulation, heart beat, sweating, etc)

3. Intercellular communication  

(Cytokines, hormones, neurotransmitters, mitokines, etc)

4. Sub-cellular processes  

(Gene expression, protein synthesis, epigenetics, membrane potential, etc.)

Allostasis Predictive regulation and activation of stress-response axes  
(HPA, SAM, immune regulation, behaviors, others)

Reserve Energy transformation capacity not consumed by  
basal life-sustaining processes and normal allostasis.

Growth 
Maintenance


Repair

Energetic costs of invested in the production of new cells (e.g., growth in children, neurogenesis),  
maintenance of biological and physiological functions (e.g., stem cell maintenance),  
and repair of molecular or tissue damage (e.g., DNA repair, elimination of dead cells).
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